


So erstellen Sie einen lokalen RAG-Agenten mit Ollama und LangChain
Was ist ein RAG?
RAG steht für Retrieval-Augmented Generation, eine leistungsstarke Technik, die darauf abzielt, die Leistung großer Sprachmodelle (LLMs) zu verbessern, indem ihnen spezifischer, relevanter Kontext in Form von Dokumenten bereitgestellt wird. Im Gegensatz zu herkömmlichen LLMs, die Antworten ausschließlich auf der Grundlage ihres vorab trainierten Wissens generieren, können Sie mit RAG die Ausgabe des Modells besser an Ihren gewünschten Ergebnissen ausrichten, indem Sie Echtzeitdaten oder domänenspezifische Informationen abrufen und nutzen.
RAG vs. Feinabstimmung
Während sowohl RAG als auch Feinabstimmung darauf abzielen, die Leistung von LLMs zu verbessern, ist RAG oft eine effizientere und ressourcenschonendere Methode. Bei der Feinabstimmung geht es darum, ein Modell anhand eines speziellen Datensatzes neu zu trainieren, was erhebliche Rechenressourcen, Zeit und Fachwissen erfordert. RAG hingegen ruft relevante Informationen dynamisch ab und integriert sie in den Generierungsprozess, was eine flexiblere und kostengünstigere Anpassung an neue Aufgaben ohne umfangreiche Umschulung ermöglicht.
Erstellen eines RAG-Agenten
Installieren der Anforderungen
Installieren Sie Ollama
Ollama stellt die Backend-Infrastruktur bereit, die für die lokale Ausführung von LLaMA erforderlich ist. Besuchen Sie zunächst die Website von Ollama und laden Sie die Anwendung herunter. Befolgen Sie die Anweisungen, um es auf Ihrem lokalen Computer einzurichten.
Installieren Sie die LangChain-Anforderungen
LangChain ist ein Python-Framework, das für die Zusammenarbeit mit verschiedenen LLMs und Vektordatenbanken entwickelt wurde und sich daher ideal für die Erstellung von RAG-Agenten eignet. Installieren Sie LangChain und seine Abhängigkeiten, indem Sie den folgenden Befehl ausführen:
pip install langchain
Codierung des RAG-Agenten
Erstellen Sie eine API-Funktion
Zunächst benötigen Sie eine Funktion zur Interaktion mit Ihrer lokalen LLaMA-Instanz. So können Sie es einrichten:
from requests import post as rpost def call_llama(prompt): headers = {"Content-Type": "application/json"} payload = { "model": "llama3.1", "prompt": prompt, "stream": False, } response = rpost( "http://localhost:11434/api/generate", headers=headers, json=payload ) return response.json()["response"]
Erstellen Sie ein LangChain-LLM
Als nächstes integrieren Sie diese Funktion in eine benutzerdefinierte LLM-Klasse in LangChain:
from langchain_core.language_models.llms import LLM class LLaMa(LLM): def _call(self, prompt, **kwargs): return call_llama(prompt) @property def _llm_type(self): return "llama-3.1-8b"
Integration des RAG-Agenten
Einrichten des Retrievers
Der Retriever ist dafür verantwortlich, relevante Dokumente basierend auf der Anfrage des Benutzers abzurufen. So richten Sie es mit FAISS für die Vektorspeicherung und den vorab trainierten Einbettungen von HuggingFace ein:
from langchain.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings documents = [ {"content": "What is your return policy? ..."}, {"content": "How long does shipping take? ..."}, # Add more documents as needed ] texts = [doc["content"] for doc in documents] retriever = FAISS.from_texts( texts, HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") ).as_retriever(k=5)
Erstellen Sie die Eingabeaufforderungsvorlage
Definieren Sie die Eingabeaufforderungsvorlage, die der RAG-Agent verwendet, um Antworten basierend auf den abgerufenen Dokumenten zu generieren:
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder faq_template = """ You are a chat agent for my E-Commerce Company. As a chat agent, it is your duty to help the human with their inquiry and make them a happy customer. Help them, using the following context: <context> {context} </context> """ faq_prompt = ChatPromptTemplate.from_messages([ ("system", faq_template), MessagesPlaceholder("messages") ])
Erstellen Sie Dokumenten- und Retrieverketten
Kombinieren Sie den Dokumentenabruf und die LLaMA-Generierung in einer zusammenhängenden Kette:
from langchain.chains.combine_documents import create_stuff_documents_chain document_chain = create_stuff_documents_chain(LLaMa(), faq_prompt) def parse_retriever_input(params): return params["messages"][-1].content retrieval_chain = RunnablePassthrough.assign( context=parse_retriever_input | retriever ).assign(answer=document_chain)
Starten Sie Ihren Ollama-Server
Bevor Sie Ihren RAG-Agenten ausführen, stellen Sie sicher, dass der Ollama-Server betriebsbereit ist. Starten Sie den Server mit dem folgenden Befehl:
ollama serve
Fordern Sie Ihren RAG-Agenten auf
Jetzt können Sie Ihren RAG-Agenten testen, indem Sie eine Anfrage senden:
from langchain.schema import HumanMessage response = retrieval_chain.invoke({ "messages": [ HumanMessage("I received a damaged item. I want my money back.") ] }) print(response)
Antwort:
„Es tut mir sehr leid zu hören, dass Sie einen beschädigten Artikel erhalten haben. Wenn Sie einen beschädigten Artikel erhalten, wenden Sie sich gemäß unserer Richtlinie bitte umgehend an unseren Kundenservice mit Fotos des Schadens. Wir werden einen Ersatz oder eine Rückerstattung für Sie veranlassen. Möchten Sie, dass ich Ihnen bei der Rückerstattung behilflich bin? Ich benötige einige Informationen von Ihnen, z. B. Ihre Bestellnummer und Details zum beschädigten Artikel. Können Sie diese bitte angeben, damit ich Ihnen bei der Bearbeitung Ihrer Anfrage helfen kann?
Indem Sie diese Schritte befolgen, können Sie einen voll funktionsfähigen lokalen RAG-Agenten erstellen, der die Leistung Ihres LLM mit Echtzeitkontext verbessern kann. Dieses Setup kann an verschiedene Domänen und Aufgaben angepasst werden, was es zu einer vielseitigen Lösung für jede Anwendung macht, bei der eine kontextbewusste Generierung von entscheidender Bedeutung ist.
Das obige ist der detaillierte Inhalt vonSo erstellen Sie einen lokalen RAG-Agenten mit Ollama und LangChain. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
