LangChain-Teil nutzt Speicher und Speicher in LangChain: Ein umfassender Leitfaden

WBOY
Freigeben: 2024-08-21 22:14:25
Original
924 Leute haben es durchsucht

LangChain Part  Leveraging Memory and Storage in LangChain: A Comprehensive Guide

LangChain Part 4 - Leveraging Memory and Storage in LangChain: A Comprehensive Guide

Code can be found here: GitHub - jamesbmour/blog_tutorials:

In the ever-evolving world of conversational AI and language models, maintaining context and efficiently managing information flow are critical components of building intelligent applications. LangChain, a powerful framework designed for working with large language models (LLMs), offers robust tools for memory management and data persistence, enabling the creation of context-aware systems.

In this guide, we'll delve into the nuances of leveraging memory and storage in LangChain to build smarter, more responsive applications.

1. Working with Memory in LangChain

Memory management in LangChain allows applications to retain context, making interactions more coherent and contextually relevant. Let’s explore the different memory types and their use cases.

1.1. Types of Memory

LangChain provides various memory types to address different scenarios. Here, we’ll focus on two key types:

ConversationBufferMemory

This memory type is ideal for short-term context retention, capturing and recalling recent interactions in a conversation.

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()
memory.save_context({"input": "Hi, I'm Alice"}, {"output": "Hello Alice, how can I help you today?"})
memory.save_context({"input": "What's the weather like?"}, {"output": "I'm sorry, I don't have real-time weather information. Is there anything else I can help you with?"})

print(memory.load_memory_variables({}))

Nach dem Login kopieren

ConversationSummaryMemory

For longer conversations, ConversationSummaryMemory is a great choice. It summarizes key points, maintaining context without overwhelming detail.

from langchain.memory import ConversationSummaryMemory
from langchain.llms import Ollama 

llm = Ollama(model='phi3',temperature=0)
memory = ConversationSummaryMemory(llm=llm)
memory.save_context({"input": "Hi, I'm Alice"}, {"output": "Hello Alice, how can I help you today?"})
memory.save_context({"input": "I'm looking for a good Italian restaurant"}, {"output": "Great! I'd be happy to help you find a good Italian restaurant. Do you have any specific preferences or requirements, such as location, price range, or specific dishes you're interested in?"})

print(memory.load_memory_variables({}))

Nach dem Login kopieren

1.2. Choosing the Right Memory Type for Your Use Case

Selecting the appropriate memory type depends on several factors:

  • Duration and Complexity: Short sessions benefit from detailed context retention with ConversationBufferMemory, while long-term interactions may require summarization via ConversationSummaryMemory.
  • Detail vs. Overview: Determine whether detailed interaction history or high-level summaries are more valuable for your application.
  • Performance: Consider the trade-offs between the memory size and retrieval speed.

Use Cases:

  • ConversationBufferMemory: Ideal for quick customer support or FAQ-style interactions.
  • ConversationSummaryMemory: Best suited for long-term engagements like project management or ongoing customer interactions.

1.3. Integrating Memory into Chains and Agents

Memory can be seamlessly integrated into LangChain chains and agents to enhance conversational capabilities.

from langchain.chains import ConversationChain  
from langchain.memory import ConversationBufferMemory
# llm = OpenAI(temperature=0)
memory = ConversationBufferMemory()
conversation = ConversationChain(
    llm=llm,
    memory=memory,
    verbose=True
)

conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?")

Nach dem Login kopieren

This example illustrates how ConversationBufferMemory can be used to remember previous interactions, enabling more natural conversations.

2. Persisting and Retrieving Data

Persistent storage ensures that conversation history and context are maintained across sessions, enabling continuity in interactions.

2.1. Storing Conversation History and State

For basic persistence, you can use file-based storage with JSON:

import json

class PersistentMemory:
    def __init__(self, file_path):
        self.file_path = file_path
        self.load_memory()

    def load_memory(self):
        try:
            with open(self.file_path, 'r') as f:
                self.chat_memory = json.load(f)
        except FileNotFoundError:
            self.chat_memory = {'messages': []}

    def save_memory(self):
        with open(self.file_path, 'w') as f:
            json.dump({'messages': self.chat_memory['messages']}, f)

# Usage
memory = PersistentMemory(file_path='conversation_history.json')
print(memory.chat_memory)
Nach dem Login kopieren

This method allows you to persist conversation history in a simple, human-readable format.

2.2. Integrating with Databases and Storage Systems

For more scalable and efficient storage, integrating with databases like SQLite is recommended:

import sqlite3

class SQLiteMemory:
    def __init__(self, db_path):
        self.db_path = db_path
        self.conn = sqlite3.connect(db_path)
        self.create_table()

    def create_table(self):
        cursor = self.conn.cursor()
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS conversations
            (id INTEGER PRIMARY KEY, input TEXT, output TEXT)
        ''')
        self.conn.commit()

    def save_context(self, inputs, outputs):
        cursor = self.conn.cursor()
        cursor.execute('INSERT INTO conversations (input, output) VALUES (?, ?)',
                       (inputs['input'], outputs['output']))
        self.conn.commit()

    def load_memory_variables(self, inputs):
        cursor = self.conn.cursor()
        cursor.execute('SELECT input, output FROM conversations ORDER BY id DESC LIMIT 10')
        rows = cursor.fetchall()
        history = "\\n".join([f"Human: {row[0]}\\nAI: {row[1]}" for row in reversed(rows)])
        return {"history": history }

# Usage
memory = SQLiteMemory('conversation_history.db')

print(memory.load_memory_variables({}))
Nach dem Login kopieren

3 Optimizing Memory Usage and Performance

To ensure your application remains responsive, consider these optimization strategies:

  • Efficient Data Structures: Use structures like deque for managing fixed-size buffers.
  • Caching Strategies: Reduce database queries by implementing caching for frequently accessed data.
  • Data Pruning: Regularly prune or summarize old data to maintain a manageable memory size.

Here’s an example of a memory class with basic caching:

import time

class CachedSQLiteMemory(SQLiteMemory):
    def __init__(self, db_path, cache_ttl=60):
        super().__init__(db_path)
        self.cache = None
        self.cache_time = 0
        self.cache_ttl = cache_ttl

    def load_memory_variables(self, inputs):
        current_time = time.time()
        if self.cache is None or (current_time - self.cache_time) > self.cache_ttl:
            var = self.cache
            self.cache = super().load_memory_variables(inputs)
            self.cache_time = current_time
            return self.cache

memory = CachedSQLiteMemory('conversation_history.db', cache_ttl=30)
Nach dem Login kopieren

This implementation caches the results of database queries for a specified time, reducing the load on the database and improving performance for applications that frequently access memory data.

Conclusion

Effective memory management is a cornerstone of building intelligent, context-aware conversational AI applications. LangChain provides a flexible and powerful framework for managing memory, allowing developers to tailor memory types to specific use cases, implement persistent storage solutions, and optimize performance for large-scale applications.

Durch die Auswahl des richtigen Speichertyps, die Integration von persistentem Speicher und die Nutzung fortschrittlicher Techniken wie benutzerdefinierter Speicherklassen und Caching-Strategien können Sie anspruchsvolle KI-Systeme erstellen, die den Kontext beibehalten, die Benutzererfahrung verbessern und trotz der Größe und Komplexität effizient arbeiten der Interaktionen nehmen zu.

Mit diesen Tools und Techniken sind Sie bestens gerüstet, um das volle Potenzial von LangChain bei der Erstellung reaktionsfähiger, intelligenter und kontextbezogener KI-Anwendungen auszuschöpfen. Ganz gleich, ob Sie Kundensupport-Bots, virtuelle Assistenten oder komplexe Konversationssysteme entwickeln, die Beherrschung von Speicher und Speicher in LangChain wird ein Schlüsselfaktor für Ihren Erfolg sein.

Wenn Sie mein Schreiben unterstützen oder mir ein Bier spendieren möchten:
https://buymeacoffee.com/bmours

Das obige ist der detaillierte Inhalt vonLangChain-Teil nutzt Speicher und Speicher in LangChain: Ein umfassender Leitfaden. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage
Über uns Haftungsausschluss Sitemap
Chinesische PHP-Website:Online-PHP-Schulung für das Gemeinwohl,Helfen Sie PHP-Lernenden, sich schnell weiterzuentwickeln!