Heim > Backend-Entwicklung > Python-Tutorial > Erstellen einer einfachen Graph-Abfrage-Engine

Erstellen einer einfachen Graph-Abfrage-Engine

WBOY
Freigeben: 2024-08-21 22:47:39
Original
530 Leute haben es durchsucht

In den letzten beiden Blogs haben wir gesehen, wie man neo4j installiert und Daten hineinlädt. In diesem Blog werden wir sehen, wie man eine einfache Graph-Abfrage-Engine erstellt, die unsere Frage beantwortet, aber Daten von neo4j abruft.

Building A Simple Graph Query Engine

Schritt 1: CYPHER-ABFRAGE ERSTELLEN

  • Um eine Verschlüsselungsabfrage zu erstellen, müssen wir GPT zusammen mit unserer Frage Schemainformationen und Eigenschaftsinformationen übergeben. Mithilfe dieser Metadaten erhalten wir von GPT eine Abfrage.

  • Ich habe die Eingabeaufforderung so strukturiert, dass für jede Benutzereingabe 3 Abfragen zurückgegeben werden

  1. Reguläre Ausdrücke – Diese Abfrage verfügt über Regex-Muster zum Abgleichen von Daten in graphDB
  2. Levenshtein-Ähnlichkeit – Diese Abfrage verwendet Levenshtein-Ähnlichkeit mit einem Schwellenwert von mehr als 0,5, um Daten aus der Diagramm-Datenbank abzugleichen und abzurufen.
  3. Einbettungsbasierte Übereinstimmung – Wir haben Einbettungen bereits in unsere Datenbank übertragen, sodass diese Abfrage die Einbettung der Benutzerabfrage verwendet, um die vollständige Liste anhand der Punktzahl aus der Kosinusähnlichkeit neu zu ordnen. Vielleicht könnte dies verbessert werden, um auch wieder in die Top 5 zu kommen.
class GraphQueryEngine:
    def __init__(self):
        self.client = OpenAI(api_key="")
        self.url = "bolt://localhost:7687"
        self.auth = ("neo4j", "neo4j@123")

    def get_response(self, user_input):
        """Used to get cypher queries from user input"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in generating Cypher queries for a Neo4j database. Your task is to understand the input and generate only Cypher read queries. Do not return anything other than the Cypher queries, as the returned result will be executed directly in the database."},
                {"role": "user",
                 "content": f"""
                 Schema Information:
                 NODES: Product_type - Contains the distinct types of products such as headphones/mobiles/laptops/washing machines, Product_details - Contains products within a product_type for example apple, samsung within mobiles, DELL within laptops 
                 NODE PROPERTIES: In node Product_type there are name(name of the product type - String), embedding(embedding of the name), and in node Product_details there are name(name of the product - string), price(price of the product - integer), description(description of the product), product_release_date(when product was release on - date), available_stock(stock left - integer), review_rating(product review - float) 
                 DIRECTION OF RELATIONSHIPS: Node Product_type is connected to node Product_details using relationship CONTAINS

                 Based on the schema, generate three read-only Cypher queries related to Product_type (e.g., chairs, headphones, fridge) or Product_details (e.g., name, description) or combination of both. Ensure that product category uses Product_type and product name/ price 

                 Query 1: Use regular expressions (avoid 'contains') - Exclude the 'embedding' property from the result.
                 Query 2: Use `apoc.text.levenshteinSimilarity > 0.5` - Exclude the 'embedding' property from the result.
                 Query 3: Use `gds.similarity.cosine()` to reorder nodes based on similarity scores. The query must include a `%s` placeholder for embedding input but exclude the 'embedding' property in the result.

                 Generate targeted queries using relationships only when necessary. The embedding property should only be used in the logic and must not appear in the query results.

                 Strictly return only the Cypher queries with no embeddings. The returned result will be executed directly in the database.

                 {user_input}
                 """},
            ],
        )

        response = completion.choices[0].message.content

        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in parsing generating Cypher queries."},
                {"role": "user",
                 "content": f"""Use this input - {response} and parse and return only the cypher queries from the input, ensure that in the cypher query if it returns embeddings then remove the embeddings alone from the query"""},
            ],
            response_format=CypherQuery,
        )
        event = completion.choices[0].message.parsed
        cypher_queries = event.cypher_queries
        print("################################## CYPHER QUERIES ######################################")
        for query in cypher_queries:
            print(query)
        return cypher_queries
Nach dem Login kopieren

 

SCHRITT 2 – EINBETTUNG IN DER DRITTEN ABFRAGE AUSFÜLLEN

  • Die dritte Abfrage verwendet gds.similarity.cosine(), daher konvertieren wir die Benutzerabfrage in Einbettungen und füllen sie in der dritten Abfrage auf
    def populate_embedding_in_query(self, user_input, cypher_queries):
        """Used to add embeddings of the user input in the 3rd query"""
        model = "text-embedding-3-small"
        user_input = user_input.replace("\n", " ")
        embeddings = self.client.embeddings.create(input=[user_input], model=model).data[0].embedding
        cypher_queries[2] = cypher_queries[2] % embeddings
        return cypher_queries
Nach dem Login kopieren

 

SCHRITT 3 – DB ABFRAGEN

  • Fragen Sie die Datenbank mithilfe der vorbereiteten Verschlüsselungsabfragen ab
    def execute_read_query(self, query):
        """Execute the cypher query"""
        results = []

        with GraphDatabase.driver(self.url, auth=self.auth) as driver:
            with driver.session() as session:
                try:
                    result = session.run(query)
                    # Collect the result from the read query
                    records = [record.data() for record in result]
                    if records:
                        results.append(records)
                except Exception as error:
                    print(f"Error in executing query")

        return results

    def fetch_data(self, cypher_queries):
        """Return the fetched data from DB post formatting"""
        results = None
        for idx in range(len(cypher_queries)):
            try:
                results = self.execute_read_query(cypher_queries[idx])
                if results:
                    if idx == len(cypher_queries) - 1:
                        results = results[0][:10]
                    break
            except Exception:
                pass
        return results
Nach dem Login kopieren

 

SCHRITT 4 – ERWEITERTE GENERATION

  • Verwenden Sie die abgerufenen Daten von GPT mithilfe der Technik der erweiterten Generierung, um mithilfe erweiterter Informationen Antworten auf Benutzeranfragen zu generieren
    def get_final_response(self, user_input, fetched_data):
        """Augumented generation using data fetched from DB"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are a chatbot for an ecommerce website, you help users to identify their desired products"},
                {"role": "user", "content": f"""User query - {user_input}
                Use the below metadata to answer my query
                {fetched_data}     
            """},
            ],
        )

        response = completion.choices[0].message.content
        return response
Nach dem Login kopieren

 

VOLLSTÄNDIGER CODE

from openai import OpenAI
from pydantic import BaseModel
from typing import List
from neo4j import GraphDatabase


class CypherQuery(BaseModel):
    cypher_queries: List[str]


class GraphQueryEngine:
    def __init__(self):
        self.client = OpenAI(api_key="")
        self.url = "bolt://localhost:7687"
        self.auth = ("neo4j", "neo4j@123")

    def populate_embedding_in_query(self, user_input, cypher_queries):
        """Used to add embeddings of the user input in the 3rd query"""
        model = "text-embedding-3-small"
        user_input = user_input.replace("\n", " ")
        embeddings = self.client.embeddings.create(input=[user_input], model=model).data[0].embedding
        cypher_queries[2] = cypher_queries[2] % embeddings
        return cypher_queries

    def execute_read_query(self, query):
        """Execute the cypher query"""
        results = []

        with GraphDatabase.driver(self.url, auth=self.auth) as driver:
            with driver.session() as session:
                try:
                    result = session.run(query)
                    # Collect the result from the read query
                    records = [record.data() for record in result]
                    if records:
                        results.append(records)
                except Exception as error:
                    print(f"Error in executing query")

        return results

    def get_response(self, user_input):
        """Used to get cypher queries from user input"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in generating Cypher queries for a Neo4j database. Your task is to understand the input and generate only Cypher read queries. Do not return anything other than the Cypher queries, as the returned result will be executed directly in the database."},
                {"role": "user",
                 "content": f"""
                 Schema Information:
                 NODES: Product_type - Contains the distinct types of products such as headphones/mobiles/laptops/washing machines, Product_details - Contains products within a product_type for example apple, samsung within mobiles, DELL within laptops 
                 NODE PROPERTIES: In node Product_type there are name(name of the product type - String), embedding(embedding of the name), and in node Product_details there are name(name of the product - string), price(price of the product - integer), description(description of the product), product_release_date(when product was release on - date), available_stock(stock left - integer), review_rating(product review - float) 
                 DIRECTION OF RELATIONSHIPS: Node Product_type is connected to node Product_details using relationship CONTAINS

                 Based on the schema, generate three read-only Cypher queries related to Product_type (e.g., chairs, headphones, fridge) or Product_details (e.g., name, description) or combination of both. Ensure that product category uses Product_type and product name/ price 

                 Query 1: Use regular expressions (avoid 'contains') - Exclude the 'embedding' property from the result.
                 Query 2: Use `apoc.text.levenshteinSimilarity > 0.5` - Exclude the 'embedding' property from the result.
                 Query 3: Use `gds.similarity.cosine()` to reorder nodes based on similarity scores. The query must include a `%s` placeholder for embedding input but exclude the 'embedding' property in the result.

                 Generate targeted queries using relationships only when necessary. The embedding property should only be used in the logic and must not appear in the query results.

                 Strictly return only the Cypher queries with no embeddings. The returned result will be executed directly in the database.

                 {user_input}
                 """},
            ],
        )

        response = completion.choices[0].message.content

        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in parsing generating Cypher queries."},
                {"role": "user",
                 "content": f"""Use this input - {response} and parse and return only the cypher queries from the input, ensure that in the cypher query if it returns embeddings then remove the embeddings alone from the query"""},
            ],
            response_format=CypherQuery,
        )
        event = completion.choices[0].message.parsed
        cypher_queries = event.cypher_queries
        print("################################## CYPHER QUERIES ######################################")
        for query in cypher_queries:
            print(query)
        return cypher_queries

    def get_final_response(self, user_input, fetched_data):
        """Augumented generation using data fetched from DB"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are a chatbot for an ecommerce website, you help users to identify their desired products"},
                {"role": "user", "content": f"""User query - {user_input}
                Use the below metadata to answer my query
                {fetched_data}     
            """},
            ],
        )

        response = completion.choices[0].message.content
        return response

    def fetch_data(self, cypher_queries):
        """Return the fetched data from DB post formatting"""
        results = None
        for idx in range(len(cypher_queries)):
            try:
                results = self.execute_read_query(cypher_queries[idx])
                if results:
                    if idx == len(cypher_queries) - 1:
                        results = results[0][:10]
                    break
            except Exception:
                pass
        return results
Nach dem Login kopieren

 

LASST ES ES VERSUCHEN

user_input = input("Enter your question : ")
query_engine = GraphQueryEngine()
cypher_queries = query_engine.get_response(user_input)
cypher_queries = query_engine.populate_embedding_in_query(user_input, cypher_queries)
fetched_data = query_engine.fetch_data(cypher_queries)
response = query_engine.get_final_response(user_input, fetched_data)
Nach dem Login kopieren

 

AUSGABE

Building A Simple Graph Query Engine

Building A Simple Graph Query Engine

Im nächsten Blog erstellen wir eine einfache FastAPI-App, um dieses Setup als API verfügbar zu machen.

 
Hoffe das hilft... !!!

 
LinkedIn – https://www.linkedin.com/in/praveenr2998/
Github – https://github.com/praveenr2998/Creating-Lightweight-RAG-Systems-With-Graphs/blob/main/fastapi_app/query_engine.py

Das obige ist der detaillierte Inhalt vonErstellen einer einfachen Graph-Abfrage-Engine. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage