


Interpretation der KDD2024 Best Student Paper, University of Science and Technology of China, Huawei Noah: New Paradigm of Sequence Recommendation DR4SR

Die AIxiv-Kolumne ist eine Kolumne zur Veröffentlichung akademischer und technischer Inhalte auf dieser Website. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
Auf der 30. ACM-Konferenz zu Knowledge Discovery und Data Mining (KDD2024), die vom 25. bis 29. August in Barcelona, Spanien, stattfand, hielt Professor Chen Enhong vom National Key Laboratory of Cognitive Intelligence der Universität of Science and Technology of China, IEEE Fellow, gewann das gemeinsam mit Huawei Noah veröffentlichte Papier „Dataset Regeneration for Sequential Recommendation“ den einzigen Preis für die beste studentische Arbeit im Research Track der Konferenz 2024. Die ersten Autoren des Papiers sind Professor Chen Enhong und Professor Lian Defu vom National Key Laboratory of Cognitive Intelligence, USTC, sowie der Doktorand Yin Mingjia, der von Wang Haote als assoziierter Forscher Noah Liu Yong und dem Forscher Guo gemeinsam betreut wird Wei war auch an der entsprechenden Arbeit der Arbeit beteiligt. Dies ist das zweite Mal, dass Studenten aus dem Team von Professor Chen Enhong diesen Preis gewonnen haben, seit KDD ihn im Jahr 2004 ins Leben gerufen hat.
Papier-Link: https://arxiv.org/abs/2405.17795 Code-Link: https://github.com/USTC -StarTeam/DR4SR








Forschungsmethoden
Modellagnostische Datensatzrekonstruktion




Mit Mithilfe von Vorschulungsaufgaben können Forschungsteams jetzt einen Datensatz-Regenerator vorab trainieren. In diesem Artikel übernehmen sie das Transformer-Modell als Hauptarchitektur des Regenerators, und seine Erzeugungsfähigkeit wurde umfassend überprüft. Der Datensatz-Regenerator besteht aus drei Modulen: einem Encoder zum Erhalten von Sequenzdarstellungen im Originaldatensatz, einem Decoder zum Regenerieren von Mustern und einem Diversity-Enhancement-Modul zum Erfassen von Eins-zu-vielen-Zuordnungsbeziehungen. Als nächstes wird das Forschungsteam diese Module separat vorstellen.
Der Encoder besteht aus mehreren gestapelten Multi-Head-Selbstaufmerksamkeitsschichten (MHSA) und Feed-Forward-Netzwerkschichten (FFN). Der Decoder reproduziert die Muster im Datensatz X' als Eingabe. Das Ziel des Decoders besteht darin, das Muster
zu erhalten. Sie komprimierten






Das Forschungsteam verglich die Leistung jedes Zielmodells mit den Varianten „DR4SR“ und „DR4SR+“, um die Wirksamkeit des vorgeschlagenen Frameworks zu überprüfen. Abbildung 4
DR4SR ist in der Lage, einen informativen und allgemeingültigen Datensatz zu rekonstruieren
- Rauschunterdrückung ist nur ein Teilbereich des Datenrekonstruktionsproblems
Das obige ist der detaillierte Inhalt vonInterpretation der KDD2024 Best Student Paper, University of Science and Technology of China, Huawei Noah: New Paradigm of Sequence Recommendation DR4SR. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Es ist ebenfalls ein Tusheng-Video, aber PaintsUndo ist einen anderen Weg gegangen. ControlNet-Autor LvminZhang begann wieder zu leben! Dieses Mal ziele ich auf den Bereich der Malerei. Das neue Projekt PaintsUndo hat nicht lange nach seinem Start 1,4.000 Sterne erhalten (die immer noch wahnsinnig steigen). Projektadresse: https://github.com/lllyasviel/Paints-UNDO Bei diesem Projekt gibt der Benutzer ein statisches Bild ein, und PaintsUndo kann Ihnen dabei helfen, automatisch ein Video des gesamten Malprozesses zu erstellen, vom Linienentwurf bis zum fertigen Produkt . Während des Zeichenvorgangs sind die Linienänderungen erstaunlich. Das Endergebnis des Videos ist dem Originalbild sehr ähnlich: Schauen wir uns eine vollständige Zeichnung an.

Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Die Autoren dieses Artikels stammen alle aus dem Team von Lehrer Zhang Lingming an der University of Illinois in Urbana-Champaign, darunter: Steven Code Repair; Doktorand im vierten Jahr, Forscher

Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Im Entwicklungsprozess der künstlichen Intelligenz war die Steuerung und Führung großer Sprachmodelle (LLM) schon immer eine der zentralen Herausforderungen, um sicherzustellen, dass diese Modelle beides sind kraftvoll und sicher dienen der menschlichen Gesellschaft. Frühe Bemühungen konzentrierten sich auf Methoden des verstärkenden Lernens durch menschliches Feedback (RL

Prost! Wie ist es, wenn es bei einer Papierdiskussion auf Worte ankommt? Kürzlich haben Studenten der Stanford University alphaXiv erstellt, ein offenes Diskussionsforum für arXiv-Artikel, das es ermöglicht, Fragen und Kommentare direkt zu jedem arXiv-Artikel zu posten. Website-Link: https://alphaxiv.org/ Tatsächlich ist es nicht erforderlich, diese Website speziell zu besuchen. Ändern Sie einfach arXiv in einer beliebigen URL in alphaXiv, um den entsprechenden Artikel direkt im alphaXiv-Forum zu öffnen: Sie können die Absätze darin genau lokalisieren das Papier, Satz: Im Diskussionsbereich auf der rechten Seite können Benutzer Fragen stellen, um dem Autor Fragen zu den Ideen und Details des Papiers zu stellen. Sie können beispielsweise auch den Inhalt des Papiers kommentieren, wie zum Beispiel: „Gegeben an.“

Kürzlich gelang der Riemann-Hypothese, die als eines der sieben großen Probleme des Jahrtausends bekannt ist, ein neuer Durchbruch. Die Riemann-Hypothese ist ein sehr wichtiges ungelöstes Problem in der Mathematik, das sich auf die genauen Eigenschaften der Verteilung von Primzahlen bezieht (Primzahlen sind Zahlen, die nur durch 1 und sich selbst teilbar sind, und sie spielen eine grundlegende Rolle in der Zahlentheorie). In der heutigen mathematischen Literatur gibt es mehr als tausend mathematische Thesen, die auf der Aufstellung der Riemann-Hypothese (oder ihrer verallgemeinerten Form) basieren. Mit anderen Worten: Sobald die Riemann-Hypothese und ihre verallgemeinerte Form bewiesen sind, werden diese mehr als tausend Sätze als Theoreme etabliert, die einen tiefgreifenden Einfluss auf das Gebiet der Mathematik haben werden, und wenn sich die Riemann-Hypothese als falsch erweist, dann unter anderem Auch diese Sätze werden teilweise ihre Gültigkeit verlieren. Neuer Durchbruch kommt von MIT-Mathematikprofessor Larry Guth und der Universität Oxford

Wenn die Antwort des KI-Modells überhaupt unverständlich ist, würden Sie es wagen, sie zu verwenden? Da maschinelle Lernsysteme in immer wichtigeren Bereichen eingesetzt werden, wird es immer wichtiger zu zeigen, warum wir ihren Ergebnissen vertrauen können und wann wir ihnen nicht vertrauen sollten. Eine Möglichkeit, Vertrauen in die Ausgabe eines komplexen Systems zu gewinnen, besteht darin, vom System zu verlangen, dass es eine Interpretation seiner Ausgabe erstellt, die für einen Menschen oder ein anderes vertrauenswürdiges System lesbar ist, d. h. so vollständig verständlich, dass mögliche Fehler erkannt werden können gefunden. Um beispielsweise Vertrauen in das Justizsystem aufzubauen, verlangen wir von den Gerichten, dass sie klare und lesbare schriftliche Stellungnahmen abgeben, die ihre Entscheidungen erläutern und stützen. Für große Sprachmodelle können wir auch einen ähnlichen Ansatz verfolgen. Stellen Sie bei diesem Ansatz jedoch sicher, dass das Sprachmodell generiert wird

Können Sprachmodelle wirklich zur Zeitreihenvorhersage verwendet werden? Gemäß Betteridges Gesetz der Schlagzeilen (jede Schlagzeile, die mit einem Fragezeichen endet, kann mit „Nein“ beantwortet werden) sollte die Antwort „Nein“ lauten. Die Tatsache scheint wahr zu sein: Ein so leistungsstarkes LLM kann mit Zeitreihendaten nicht gut umgehen. Zeitreihen, also Zeitreihen, beziehen sich, wie der Name schon sagt, auf eine Reihe von Datenpunktsequenzen, die in der Reihenfolge ihres Auftretens angeordnet sind. Die Zeitreihenanalyse ist in vielen Bereichen von entscheidender Bedeutung, einschließlich der Vorhersage der Ausbreitung von Krankheiten, Einzelhandelsanalysen, Gesundheitswesen und Finanzen. Im Bereich der Zeitreihenanalyse haben viele Forscher in letzter Zeit untersucht, wie man mithilfe großer Sprachmodelle (LLM) Anomalien in Zeitreihen klassifizieren, vorhersagen und erkennen kann. Diese Arbeiten gehen davon aus, dass Sprachmodelle, die gut mit sequentiellen Abhängigkeiten in Texten umgehen können, auch auf Zeitreihen verallgemeinert werden können.

Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. E-Mail-Adresse: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Einleitung In den letzten Jahren hat die Anwendung multimodaler großer Sprachmodelle (MLLM) in verschiedenen Bereichen bemerkenswerte Erfolge erzielt. Als Grundmodell für viele nachgelagerte Aufgaben besteht aktuelles MLLM jedoch aus dem bekannten Transformer-Netzwerk, das
