Heim Web-Frontend js-Tutorial Array-Suche in DSA mit JavaScript: Von den Grundlagen bis zu Fortgeschrittenen

Array-Suche in DSA mit JavaScript: Von den Grundlagen bis zu Fortgeschrittenen

Sep 04, 2024 pm 10:47 PM

Array Searching in DSA using JavaScript: From Basics to Advanced

Array searching is a fundamental concept in Data Structures and Algorithms (DSA). This blog post will cover various array searching techniques using JavaScript, ranging from basic to advanced levels. We'll explore 20 examples, discuss time complexities, and provide LeetCode problems for practice.

Table of Contents

  1. Linear Search
  2. Binary Search
  3. Jump Search
  4. Interpolation Search
  5. Exponential Search
  6. Subarray Search
  7. Two Pointer Technique
  8. Sliding Window Technique
  9. Advanced Searching Techniques
  10. LeetCode Practice Problems

1. Linear Search

Linear search is the simplest searching algorithm that works on both sorted and unsorted arrays.

Time Complexity: O(n), where n is the number of elements in the array.

Example 1: Basic Linear Search

function linearSearch(arr, target) {
    for (let i = 0; i < arr.length; i++) {
        if (arr[i] === target) {
            return i;
        }
    }
    return -1;
}

const arr = [5, 2, 8, 12, 1, 6];
console.log(linearSearch(arr, 8)); // Output: 2
console.log(linearSearch(arr, 3)); // Output: -1
Nach dem Login kopieren

Example 2: Find All Occurrences

function findAllOccurrences(arr, target) {
    const result = [];
    for (let i = 0; i < arr.length; i++) {
        if (arr[i] === target) {
            result.push(i);
        }
    }
    return result;
}

const arr = [1, 2, 3, 4, 2, 5, 2, 6];
console.log(findAllOccurrences(arr, 2)); // Output: [1, 4, 6]
Nach dem Login kopieren

2. Binary Search

Binary search is an efficient algorithm for searching in sorted arrays.

Time Complexity: O(log n)

Example 3: Iterative Binary Search

function binarySearch(arr, target) {
    let left = 0;
    let right = arr.length - 1;

    while (left <= right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] === target) {
            return mid;
        } else if (arr[mid] < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return -1;
}

const sortedArr = [1, 3, 5, 7, 9, 11, 13, 15];
console.log(binarySearch(sortedArr, 7)); // Output: 3
console.log(binarySearch(sortedArr, 10)); // Output: -1
Nach dem Login kopieren

Example 4: Recursive Binary Search

function recursiveBinarySearch(arr, target, left = 0, right = arr.length - 1) {
    if (left > right) {
        return -1;
    }

    const mid = Math.floor((left + right) / 2);
    if (arr[mid] === target) {
        return mid;
    } else if (arr[mid] < target) {
        return recursiveBinarySearch(arr, target, mid + 1, right);
    } else {
        return recursiveBinarySearch(arr, target, left, mid - 1);
    }
}

const sortedArr = [1, 3, 5, 7, 9, 11, 13, 15];
console.log(recursiveBinarySearch(sortedArr, 13)); // Output: 6
console.log(recursiveBinarySearch(sortedArr, 4)); // Output: -1
Nach dem Login kopieren

3. Jump Search

Jump search is an algorithm for sorted arrays that works by skipping some elements to reduce the number of comparisons.

Time Complexity: O(√n)

Example 5: Jump Search Implementation

function jumpSearch(arr, target) {
    const n = arr.length;
    const step = Math.floor(Math.sqrt(n));
    let prev = 0;

    while (arr[Math.min(step, n) - 1] < target) {
        prev = step;
        step += Math.floor(Math.sqrt(n));
        if (prev >= n) {
            return -1;
        }
    }

    while (arr[prev] < target) {
        prev++;
        if (prev === Math.min(step, n)) {
            return -1;
        }
    }

    if (arr[prev] === target) {
        return prev;
    }
    return -1;
}

const sortedArr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377];
console.log(jumpSearch(sortedArr, 55)); // Output: 10
console.log(jumpSearch(sortedArr, 111)); // Output: -1
Nach dem Login kopieren

4. Interpolation Search

Interpolation search is an improved variant of binary search for uniformly distributed sorted arrays.

Time Complexity: O(log log n) for uniformly distributed data, O(n) in the worst case.

Example 6: Interpolation Search Implementation

function interpolationSearch(arr, target) {
    let low = 0;
    let high = arr.length - 1;

    while (low <= high && target >= arr[low] && target <= arr[high]) {
        if (low === high) {
            if (arr[low] === target) return low;
            return -1;
        }

        const pos = low + Math.floor(((target - arr[low]) * (high - low)) / (arr[high] - arr[low]));

        if (arr[pos] === target) {
            return pos;
        } else if (arr[pos] < target) {
            low = pos + 1;
        } else {
            high = pos - 1;
        }
    }
    return -1;
}

const uniformArr = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512];
console.log(interpolationSearch(uniformArr, 64)); // Output: 6
console.log(interpolationSearch(uniformArr, 100)); // Output: -1
Nach dem Login kopieren

5. Exponential Search

Exponential search is useful for unbounded searches and works well for bounded arrays too.

Time Complexity: O(log n)

Example 7: Exponential Search Implementation

function exponentialSearch(arr, target) {
    if (arr[0] === target) {
        return 0;
    }

    let i = 1;
    while (i < arr.length && arr[i] <= target) {
        i *= 2;
    }

    return binarySearch(arr, target, i / 2, Math.min(i, arr.length - 1));
}

function binarySearch(arr, target, left, right) {
    while (left <= right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] === target) {
            return mid;
        } else if (arr[mid] < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return -1;
}

const sortedArr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
console.log(exponentialSearch(sortedArr, 7)); // Output: 6
console.log(exponentialSearch(sortedArr, 16)); // Output: -1
Nach dem Login kopieren

6. Subarray Search

Searching for subarrays within a larger array is a common problem in DSA.

Example 8: Naive Subarray Search

Time Complexity: O(n * m), where n is the length of the main array and m is the length of the subarray.

function naiveSubarraySearch(arr, subArr) {
    for (let i = 0; i <= arr.length - subArr.length; i++) {
        let j;
        for (j = 0; j < subArr.length; j++) {
            if (arr[i + j] !== subArr[j]) {
                break;
            }
        }
        if (j === subArr.length) {
            return i;
        }
    }
    return -1;
}

const mainArr = [1, 2, 3, 4, 5, 6, 7, 8, 9];
const subArr = [3, 4, 5];
console.log(naiveSubarraySearch(mainArr, subArr)); // Output: 2
Nach dem Login kopieren

Example 9: KMP Algorithm for Subarray Search

Time Complexity: O(n + m)

function kmpSearch(arr, pattern) {
    const n = arr.length;
    const m = pattern.length;
    const lps = computeLPS(pattern);
    let i = 0, j = 0;

    while (i < n) {
        if (pattern[j] === arr[i]) {
            i++;
            j++;
        }

        if (j === m) {
            return i - j;
        } else if (i < n && pattern[j] !== arr[i]) {
            if (j !== 0) {
                j = lps[j - 1];
            } else {
                i++;
            }
        }
    }
    return -1;
}

function computeLPS(pattern) {
    const m = pattern.length;
    const lps = new Array(m).fill(0);
    let len = 0;
    let i = 1;

    while (i < m) {
        if (pattern[i] === pattern[len]) {
            len++;
            lps[i] = len;
            i++;
        } else {
            if (len !== 0) {
                len = lps[len - 1];
            } else {
                lps[i] = 0;
                i++;
            }
        }
    }
    return lps;
}

const mainArr = [1, 2, 3, 4, 5, 6, 7, 8, 9];
const pattern = [3, 4, 5];
console.log(kmpSearch(mainArr, pattern)); // Output: 2
Nach dem Login kopieren

7. Two Pointer Technique

The two-pointer technique is often used for searching in sorted arrays or when dealing with pairs.

Example 10: Find Pair with Given Sum

Time Complexity: O(n)

function findPairWithSum(arr, target) {
    let left = 0;
    let right = arr.length - 1;

    while (left < right) {
        const sum = arr[left] + arr[right];
        if (sum === target) {
            return [left, right];
        } else if (sum < target) {
            left++;
        } else {
            right--;
        }
    }
    return [-1, -1];
}

const sortedArr = [1, 2, 3, 4, 5, 6, 7, 8, 9];
console.log(findPairWithSum(sortedArr, 10)); // Output: [3, 7]
Nach dem Login kopieren

Example 11: Three Sum Problem

Time Complexity: O(n^2)

function threeSum(arr, target) {
    arr.sort((a, b) => a - b);
    const result = [];

    for (let i = 0; i < arr.length - 2; i++) {
        if (i > 0 && arr[i] === arr[i - 1]) continue;

        let left = i + 1;
        let right = arr.length - 1;

        while (left < right) {
            const sum = arr[i] + arr[left] + arr[right];
            if (sum === target) {
                result.push([arr[i], arr[left], arr[right]]);
                while (left < right && arr[left] === arr[left + 1]) left++;
                while (left < right && arr[right] === arr[right - 1]) right--;
                left++;
                right--;
            } else if (sum < target) {
                left++;
            } else {
                right--;
            }
        }
    }
    return result;
}

const arr = [-1, 0, 1, 2, -1, -4];
console.log(threeSum(arr, 0)); // Output: [[-1, -1, 2], [-1, 0, 1]]
Nach dem Login kopieren

8. Sliding Window Technique

The sliding window technique is useful for solving array/string problems with contiguous elements.

Example 12: Maximum Sum Subarray of Size K

Time Complexity: O(n)

function maxSumSubarray(arr, k) {
    let maxSum = 0;
    let windowSum = 0;

    for (let i = 0; i < k; i++) {
        windowSum += arr[i];
    }
    maxSum = windowSum;

    for (let i = k; i < arr.length; i++) {
        windowSum = windowSum - arr[i - k] + arr[i];
        maxSum = Math.max(maxSum, windowSum);
    }

    return maxSum;
}

const arr = [1, 4, 2, 10, 23, 3, 1, 0, 20];
console.log(maxSumSubarray(arr, 4)); // Output: 39
Nach dem Login kopieren

Example 13: Longest Substring with K Distinct Characters

Time Complexity: O(n)

function longestSubstringKDistinct(s, k) {
    const charCount = new Map();
    let left = 0;
    let maxLength = 0;

    for (let right = 0; right < s.length; right++) {
        charCount.set(s[right], (charCount.get(s[right]) || 0) + 1);

        while (charCount.size > k) {
            charCount.set(s[left], charCount.get(s[left]) - 1);
            if (charCount.get(s[left]) === 0) {
                charCount.delete(s[left]);
            }
            left++;
        }

        maxLength = Math.max(maxLength, right - left + 1);
    }

    return maxLength;
}

const s = "aabacbebebe";
console.log(longestSubstringKDistinct(s, 3)); // Output: 7
Nach dem Login kopieren

9. Advanced Searching Techniques

Example 14: Search in Rotated Sorted Array

Time Complexity: O(log n)

function searchRotatedArray(arr, target) {
    let left = 0;
    let right = arr.length - 1;

    while (left <= right) {
        const mid = Math.floor((left + right) / 2);

        if (arr[mid] === target) {
            return mid;
        }

        if (arr[left] <= arr[mid]) {
            if (target >= arr[left] && target < arr[mid]) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        } else {
            if (target > arr[mid] && target <= arr[right]) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
    }
    return -1;
}

const rotatedArr = [4, 5, 6, 7, 0, 1, 2];
console.log(searchRotatedArray(rotatedArr, 0)); // Output: 4
Nach dem Login kopieren

Example 15: Search in a 2D Matrix

Time Complexity: O(log(m * n)), where m is the number of rows and n is the number of columns

function searchMatrix(matrix, target) {
    if (!matrix.length || !matrix[0].length) return false;

    const m = matrix.length;
    const n = matrix[0].length;
    let left = 0;
    let right = m * n - 1;

    while (left <= right) {
        const mid = Math.floor((left + right) / 2);
        const midValue = matrix[Math.floor(mid / n)][mid % n];

        if (midValue === target) {
            return true;
        } else if (midValue < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return false;
}

const matrix = [
    [1,   3,  5,  7],
    [10, 11, 16, 20],
    [23, 30, 34, 50]
];
console.log(searchMatrix(matrix, 3)); // Output: true
Nach dem Login kopieren

Example 16: Find Peak Element

Time Complexity: O(log n)

function findPeakElement(arr) {
    let left = 0;
    let right = arr.length - 1;

    while (left < right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] > arr[mid + 1]) {
            right = mid;
        } else {
            left = mid + 1;
        }
    }
    return left;
}

const arr = [1, 2, 1, 3, 5, 6, 4];
console.log(findPeakElement(arr)); // Output: 5
Nach dem Login kopieren

Example 17: Search in Sorted Array of Unknown Size

Time Complexity: O(log n)

function searchUnknownSize(arr, target) {
    let left = 0;
    let right = 1;

    while (arr[right] < target) {
        left = right;
        right *= 2;
    }

    return binarySearch(arr, target, left, right);
}

function binarySearch(arr, target, left, right) {
    while (left <= right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] === target) {
            return mid;
        } else if (arr[mid] < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return -1;
}

// Assume we have a special array that throws an error when accessing out-of-bounds elements
const specialArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
console.log(searchUnknownSize(specialArray, 7)); // Output: 6
Nach dem Login kopieren

Example 18: Find Minimum in Rotated Sorted Array

Time Complexity: O(log n)

function findMin(arr) {
    let left = 0;
    let right = arr.length - 1;

    while (left < right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] > arr[right]) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }
    return arr[left];
}

const rotatedArr = [4, 5, 6, 7, 0, 1, 2];
console.log(findMin(rotatedArr)); // Output: 0
Nach dem Login kopieren

Example 19: Search for a Range

Time Complexity: O(log n)

function searchRange(arr, target) {
    const left = findBound(arr, target, true);
    if (left === -1) return [-1, -1];
    const right = findBound(arr, target, false);
    return [left, right];
}

function findBound(arr, target, isLeft) {
    let left = 0;
    let right = arr.length - 1;
    let result = -1;

    while (left <= right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] === target) {
            result = mid;
            if (isLeft) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        } else if (arr[mid] < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return result;
}

const arr = [5, 7, 7, 8, 8, 10];
console.log(searchRange(arr, 8)); // Output: [3, 4]
Nach dem Login kopieren

Example 20: Median of Two Sorted Arrays

Time Complexity: O(log(min(m, n))), where m and n are the lengths of the two arrays

function findMedianSortedArrays(nums1, nums2) {
    if (nums1.length > nums2.length) {
        return findMedianSortedArrays(nums2, nums1);
    }

    const m = nums1.length;
    const n = nums2.length;
    let left = 0;
    let right = m;

    while (left <= right) {
        const partitionX = Math.floor((left + right) / 2);
        const partitionY = Math.floor((m + n + 1) / 2) - partitionX;

        const maxLeftX = partitionX === 0 ? -Infinity : nums1[partitionX - 1];
        const minRightX = partitionX === m ? Infinity : nums1[partitionX];
        const maxLeftY = partitionY === 0 ? -Infinity : nums2[partitionY - 1];
        const minRightY = partitionY === n ? Infinity : nums2[partitionY];

        if (maxLeftX <= minRightY && maxLeftY <= minRightX) {
            if ((m + n) % 2 === 0) {
                return (Math.max(maxLeftX, maxLeftY) + Math.min(minRightX, minRightY)) / 2;
            } else {
                return Math.max(maxLeftX, maxLeftY);
            }
        } else if (maxLeftX > minRightY) {
            right = partitionX - 1;
        } else {
            left = partitionX + 1;
        }
    }
    throw new Error("Input arrays are not sorted.");
}

const nums1 = [1, 3];
const nums2 = [2];
console.log(findMedianSortedArrays(nums1, nums2)); // Output: 2
Nach dem Login kopieren

10. LeetCode Practice Problems

To further test your understanding and skills in array searching, here are 15 LeetCode problems you can practice:

  1. Two Sum
  2. Search in Rotated Sorted Array
  3. Find Minimum in Rotated Sorted Array
  4. Search a 2D Matrix
  5. Find Peak Element
  6. Search for a Range
  7. Median of Two Sorted Arrays
  8. Kth Largest Element in an Array
  9. Find K Closest Elements
  10. Search in a Sorted Array of Unknown Size
  11. Capacity To Ship Packages Within D Days
  12. Koko Eating Bananas
  13. Find the Duplicate Number
  14. Longest Substring with At Most K Distinct Characters
  15. Subarray Sum Equals K

These problems cover a wide range of array searching techniques and will help you solidify your understanding of the concepts discussed in this blog post.

In conclusion, mastering array searching techniques is crucial for becoming proficient in Data Structures and Algorithms. By understanding and implementing these various methods, you'll be better equipped to tackle complex problems and optimize your code. Remember to analyze the time and space complexity of each approach and choose the most appropriate one based on the specific requirements of your problem.

Happy coding and searching!

Das obige ist der detaillierte Inhalt vonArray-Suche in DSA mit JavaScript: Von den Grundlagen bis zu Fortgeschrittenen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1667
14
PHP-Tutorial
1273
29
C#-Tutorial
1255
24
JavaScript -Engines: Implementierungen vergleichen JavaScript -Engines: Implementierungen vergleichen Apr 13, 2025 am 12:05 AM

Unterschiedliche JavaScript -Motoren haben unterschiedliche Auswirkungen beim Analysieren und Ausführen von JavaScript -Code, da sich die Implementierungsprinzipien und Optimierungsstrategien jeder Engine unterscheiden. 1. Lexikalanalyse: Quellcode in die lexikalische Einheit umwandeln. 2. Grammatikanalyse: Erzeugen Sie einen abstrakten Syntaxbaum. 3. Optimierung und Kompilierung: Generieren Sie den Maschinencode über den JIT -Compiler. 4. Führen Sie aus: Führen Sie den Maschinencode aus. V8 Engine optimiert durch sofortige Kompilierung und versteckte Klasse.

Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Apr 16, 2025 am 12:12 AM

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Von C/C nach JavaScript: Wie alles funktioniert Von C/C nach JavaScript: Wie alles funktioniert Apr 14, 2025 am 12:05 AM

Die Verschiebung von C/C zu JavaScript erfordert die Anpassung an dynamische Typisierung, Müllsammlung und asynchrone Programmierung. 1) C/C ist eine statisch typisierte Sprache, die eine manuelle Speicherverwaltung erfordert, während JavaScript dynamisch eingegeben und die Müllsammlung automatisch verarbeitet wird. 2) C/C muss in den Maschinencode kompiliert werden, während JavaScript eine interpretierte Sprache ist. 3) JavaScript führt Konzepte wie Verschlüsse, Prototypketten und Versprechen ein, die die Flexibilität und asynchrone Programmierfunktionen verbessern.

JavaScript und das Web: Kernfunktionalität und Anwendungsfälle JavaScript und das Web: Kernfunktionalität und Anwendungsfälle Apr 18, 2025 am 12:19 AM

Zu den Hauptanwendungen von JavaScript in der Webentwicklung gehören die Interaktion der Clients, die Formüberprüfung und die asynchrone Kommunikation. 1) Dynamisches Inhaltsaktualisierung und Benutzerinteraktion durch DOM -Operationen; 2) Die Kundenüberprüfung erfolgt vor dem Einreichung von Daten, um die Benutzererfahrung zu verbessern. 3) Die Aktualisierung der Kommunikation mit dem Server wird durch AJAX -Technologie erreicht.

JavaScript in Aktion: Beispiele und Projekte in realer Welt JavaScript in Aktion: Beispiele und Projekte in realer Welt Apr 19, 2025 am 12:13 AM

Die Anwendung von JavaScript in der realen Welt umfasst Front-End- und Back-End-Entwicklung. 1) Zeigen Sie Front-End-Anwendungen an, indem Sie eine TODO-Listanwendung erstellen, die DOM-Operationen und Ereignisverarbeitung umfasst. 2) Erstellen Sie RESTFUFFUPI über Node.js und express, um Back-End-Anwendungen zu demonstrieren.

Verständnis der JavaScript -Engine: Implementierungsdetails Verständnis der JavaScript -Engine: Implementierungsdetails Apr 17, 2025 am 12:05 AM

Es ist für Entwickler wichtig, zu verstehen, wie die JavaScript -Engine intern funktioniert, da sie effizientere Code schreibt und Leistungs Engpässe und Optimierungsstrategien verstehen kann. 1) Der Workflow der Engine umfasst drei Phasen: Parsen, Kompilieren und Ausführung; 2) Während des Ausführungsprozesses führt die Engine dynamische Optimierung durch, wie z. B. Inline -Cache und versteckte Klassen. 3) Zu Best Practices gehören die Vermeidung globaler Variablen, die Optimierung von Schleifen, die Verwendung von const und lass und die Vermeidung übermäßiger Verwendung von Schließungen.

Python gegen JavaScript: Community, Bibliotheken und Ressourcen Python gegen JavaScript: Community, Bibliotheken und Ressourcen Apr 15, 2025 am 12:16 AM

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Python vs. JavaScript: Entwicklungsumgebungen und Tools Python vs. JavaScript: Entwicklungsumgebungen und Tools Apr 26, 2025 am 12:09 AM

Sowohl Python als auch JavaScripts Entscheidungen in Entwicklungsumgebungen sind wichtig. 1) Die Entwicklungsumgebung von Python umfasst Pycharm, Jupyternotebook und Anaconda, die für Datenwissenschaft und schnelles Prototyping geeignet sind. 2) Die Entwicklungsumgebung von JavaScript umfasst Node.JS, VSCODE und WebPack, die für die Entwicklung von Front-End- und Back-End-Entwicklung geeignet sind. Durch die Auswahl der richtigen Tools nach den Projektbedürfnissen kann die Entwicklung der Entwicklung und die Erfolgsquote der Projekte verbessert werden.

See all articles