Heim > Backend-Entwicklung > Python-Tutorial > Streamlit-Teilschreib- und Textelemente

Streamlit-Teilschreib- und Textelemente

王林
Freigeben: 2024-09-06 06:02:01
Original
473 Leute haben es durchsucht

Streamlit Part Write and Text Elements

Getting Started with Streamlit: A Beginner's Guide

Code can be found here: GitHub - jamesbmour/blog_tutorials:

Video version of blog can be found here: https://youtu.be/EQcqNW7Nw7M

Introduction

Streamlit is an open-source app framework that allows you to create beautiful, interactive web applications with minimal effort. If you’re a data scientist, machine learning engineer, or anyone working with data, Streamlit is the perfect tool to turn your Python scripts into interactive apps quickly. In this tutorial, we will dive into the basics of Streamlit by exploring some of its powerful features, such as st.write(), magic commands, and text elements.

Let’s get started by building a simple app to demonstrate these functionalities!

Setting Up Your Streamlit Environment

Before we jump into the code, make sure you have Streamlit installed. If you haven't installed it yet, you can do so with the following command:

pip install streamlit
Nach dem Login kopieren

Now, let’s start coding our first Streamlit app.

Building Your First Streamlit App

1. Adding a Title to Your App

Streamlit makes it incredibly easy to add titles and headings to your app. The st.title() function allows you to display a large title at the top of your application, which serves as the main heading.

import streamlit as st

st.title("Introduction to Streamlit: Part 1")

Nach dem Login kopieren

This will display a large, bold title at the top of your app.

Streamlit Write Elements

Using st.write() for Versatile Output

The st.write() function is one of the most versatile functions in Streamlit. You can use it to display almost anything, including text, data frames, charts, and more—all with a single line of code.

Displaying a DataFrame

Let's start by displaying a simple DataFrame using st.write().

import pandas as pd

df = pd.DataFrame({
    "Column 1": [1, 2, 3, 4],
    "Column 2": [10, 20, 30, 40]
})

st.write("DataFrame using st.write() function")
st.write(df)

Nach dem Login kopieren

This code creates a DataFrame with two columns and displays it directly in your app. The beauty of st.write() is that it automatically formats the DataFrame into a neat table, complete with scroll bars if needed.

Displaying Markdown Text

Another cool feature of st.write() is its ability to render Markdown text. This allows you to add formatted text, such as headers, subheaders, and paragraphs, with ease.

markdown_txt = (
    "### This is a Markdown Header\\n"
    "#### This is a Markdown Subheader\\n"
    "This is a Markdown paragraph.\\n"
)
st.write(markdown_txt)

Nach dem Login kopieren

With just a few lines of code, you can add rich text to your app.

Streaming Data with st.write_stream()

Streamlit also allows you to stream data to your app in real-time using the st.write_stream() function. This is particularly useful for displaying data that updates over time, such as sensor readings or live analytics.

import time

st.write("## Streaming Data using st.write_stream() function")
stream_btn = st.button("Click Button to Stream Data")

TEXT = """
# Stream a generator, iterable, or stream-like sequence to the app.
"""

def stream_data(txt="Hello, World!"):
    for word in txt.split(" "):
        yield word + " "
        time.sleep(0.01)

if stream_btn:
    st.write_stream(stream_data(TEXT))

Nach dem Login kopieren

In this example, when the button is clicked, the app will start streaming data word by word from the TEXT string, simulating real-time data updates.

Streamlit Text Elements

In addition to data streaming, Streamlit provides several text elements to enhance the presentation of your app.

Headers and Subheaders

You can easily add headers and subheaders using st.header() and st.subheader():

st.header("This is a Header")
st.subheader("This is a Subheader")

Nach dem Login kopieren

These functions help structure your content, making your app more organized and visually appealing.

Captions

Captions are useful for adding small notes or explanations. You can add them using st.caption():

st.caption("This is a caption")

Nach dem Login kopieren

Displaying Code

If you want to display code snippets in your app, you can use st.code():

code_txt = """
import pandas as pd
import streamlit as st

st.title("Streamlit Tutorials")
for i in range(10):
    st.write(i)
"""
st.code(code_txt)

Nach dem Login kopieren

This will display the code in a nicely formatted, syntax-highlighted block.

Displaying Mathematical Expressions

For those who need to include mathematical equations, Streamlit supports LaTeX:

st.latex(r"e = mc^2")
st.latex(r"\\int_a^b x^2 dx")

Nach dem Login kopieren

These commands will render LaTeX equations directly in your app.

Adding Dividers

To separate different sections of your app, you can use st.divider():

st.write("This is some text below the divider.")
st.divider()
st.write("This is some other text below the divider.")

Nach dem Login kopieren

Dividers add a horizontal line between sections, helping to break up the content visually.

Conclusion

In this introductory tutorial, we covered the basics of Streamlit, including how to use st.write() to display data and text, and how to stream data using st.write_stream(). We also explored various text elements to enhance the structure and readability of your app.

Streamlit makes it incredibly easy to create interactive web applications with just a few lines of code. Whether you're building dashboards, data exploration tools, or any other data-driven app, Streamlit provides the tools you need to get started quickly.

In the next tutorial, we’ll dive deeper into widgets and interactivity features in Streamlit. Stay tuned!

If you found this tutorial helpful, don't forget to share it and subscribe for more content. See you in the next post!

If you'd like to support my writing or treat me to a beer: https://buymeacoffee.com/bmours

Das obige ist der detaillierte Inhalt vonStreamlit-Teilschreib- und Textelemente. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage