Einführungen in ML
Was ist maschinelles Lernen?
Maschinelles Lernen ist ein Bereich der Informatik, der statische Technologien verwendet, um Computersystemen die Fähigkeit zu geben, mit Daten, ohne zu „Lernen“. wird explizit programmiert.
Das heißt, "ML dreht sich alles um das Lernen aus Daten"
Explizite Programmierung bedeutet, Codes für jedes Szenario zu schreiben, um diese Situation zu bewältigen.
Beim maschinellen Lernen anstatt expliziten Code für jedes Szenario zu schreiben, trainieren wir Modelle, um Muster aus Daten zu lernen, sodass sie Vorhersagen oder Entscheidungenfür ungesehene Situationen.
Eingabe und Ausgabe, schreiben aber keinen Code für jeden einzelnen Fall. ML-Algorithmen verarbeiten sie automatisch.
Ein einfaches Beispiel kann sein:
Summationsfunktion:
Bei der expliziten Programmierung schreiben wir zum Addieren von zwei Zahlen spezifischen Code, der nur für diesen Fall funktioniert. Dieser Code funktioniert nicht zum Hinzufügen von 5 oder N Zahlen ohne Änderung.Im Gegensatz dazu können wir mit ML eine Excel-Datei bereitstellen, in der jede Zeile unterschiedliche Zahlen und deren Summe enthält. Während der ML-Algorithmus diesen Datensatz trainiert, lernt er das Additionsmuster. Wenn in Zukunft 2, 10 oder N Zahlen gegeben werden, kann es die Addition basierend auf dem erlernten Muster durchführen, ohne dass für jedes Szenario ein spezifischer Code erforderlich ist.
Wo verwenden wir ML?
- E-Mail-Spam-Klassifizierer:
Stellen Sie sich nun vor, ein Werbeunternehmen erkennt, dass es einen solchen Algorithmus gibt, um seinen Spam zu erkennen. Anstatt also „Huge“ dreimal zu wiederholen, verwenden sie Synonyme wie „Huge“, „Massive“ und „Big“. In diesem Fall würde die ursprüngliche Regel nicht funktionieren. Was wäre die Lösung? Sollte ich meine bisherigen Algorithmen noch einmal ändern? Wie oft werde ich das schaffen?
In
ML lernt das Modell aus den bereitgestellten Daten und erstellt automatisch Algorithmen basierend auf diesen Daten. Wenn sich die Daten ändern, passt sich der Algorithmus entsprechend an. Der Algorithmus muss nicht manuell geändert werden, er aktualisiert sich je nach Bedarf auf der Grundlage der neuen Daten.
- Bildklassifizierung:
expliziten Programmierung für die Bildklassifizierung müssten wir manuell Regeln schreiben, um Merkmale eines Hundes wie Form, Größe, Fellfarbe oder Schwanz zu identifizieren. Diese Regeln würden nur für bestimmte Bilder funktionieren und ließen sich nicht gut auf alle Hunderassen übertragen. Wenn wir auf neue Rassen oder Variationen stoßen würden, müssten wir für jede neue Regeln hinzufügen.
InML statt spezifische Regeln zu schreiben, stellen wir dem Modell einen großen Datensatz von Hundebildern zur Verfügung, die nach Rasse gekennzeichnet sind. Das Modell lernt dann Muster aus den Daten, etwa die gemeinsamen Merkmale verschiedener Rassen, und verwendet dieses erlernte Wissen, um neue Hundebilder zu klassifizieren, auch wenn es genau diese Rassen noch nie zuvor gesehen hat. Der Algorithmus passt sich automatisch an Schwankungen der Daten an.
Außerdem gibt es tausende Einsatzmöglichkeiten von ML. Sie fragen sich vielleicht,
Warum war maschinelles Lernen vor 2010 nicht so beliebt?
- Begrenzte Speicherkapazität machte es aufgrund des Mangels an Festplatten schwierig, große Datenmengen zu speichern.
- Es waren nicht genügend Daten verfügbar, um Modelle für maschinelles Lernen effektiv zu trainieren.
- Hardwareeinschränkungen, wie etwa weniger leistungsstarke GPUs und Prozessoren, schränkten die Fähigkeit ein, komplexe Algorithmen effizient auszuführen.
Vielen Dank, dass Sie sich die Zeit genommen haben, dies durchzulesen.
Das obige ist der detaillierte Inhalt vonEinführungen in ML. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.
