Heim > Backend-Entwicklung > Python-Tutorial > Tag der #daysofMiva || Beherrschung von Python-Modulen, JSON, Mathematik und Datumsangaben

Tag der #daysofMiva || Beherrschung von Python-Modulen, JSON, Mathematik und Datumsangaben

王林
Freigeben: 2024-09-07 14:30:32
Original
1070 Leute haben es durchsucht

Day of #daysofMiva || Mastering Python Modules, JSON, Math, and Dates

Es ist Tag Nr. 14 und ich bin wieder da, wo ich meine einfachen Python-Projekte zurückgelassen habe, bevor ich zum Flask gelaufen bin. Lol! Codieren kann aufregend und manchmal auch frustrierend sein (oder ist es meistens ...). Wie auch immer, Sie wissen es durch Ihre Erfahrungen besser. Deshalb freue ich mich darauf, meine zu dokumentieren. Heute habe ich Python-Module, Polymorphismus, JSON, Mathematik, Datetime, Scope und Iteratoren gelernt. Lass uns eintauchen.

1. Python-Module: Erstellen wiederverwendbarer Codebibliotheken

Module in Python sind Dateien, die Python-Code (Funktionen, Variablen oder Klassen) enthalten, der in verschiedenen Skripten oder Projekten wiederverwendet werden kann. Das Erstellen von Modulen fördert die Wiederverwendung von Code und macht Ihre Projekte sauberer und modularer.

Module erstellen und importieren:

Ein Modul ist einfach eine Python-Datei, die mit der Erweiterung .py gespeichert wird. Sie können Funktionen, Variablen und Klassen in einem Modul definieren und in ein anderes importieren.

Beispiel: Erstellen und Verwenden eines Moduls

  1. Erstellen Sie eine Datei namens mymodule.py mit folgendem Inhalt:
# mymodule.py
def greeting(name):
    print(f"Hello, {name}")
Nach dem Login kopieren
  1. Importieren Sie nun das Modul in ein anderes Python-Skript:
import mymodule

mymodule.greeting("Jonathan")  # Output: Hello, Jonathan
Nach dem Login kopieren

Sie können einem Modul beim Importieren auch einen Alias ​​zuweisen:

import mymodule as mx

mx.greeting("Jane")  # Output: Hello, Jane
Nach dem Login kopieren

Verwendung integrierter Module:

Python verfügt über viele integrierte Module. Sie können beispielsweise das Plattformmodul verwenden, um Systeminformationen abzurufen:

import platform

print(platform.system())  # Output: The OS you're running (e.g., Windows, Linux, etc.)
Nach dem Login kopieren

2. Arbeiten mit JSON in Python: Parsen und Generieren von JSON-Daten

JSON (JavaScript Object Notation) wird häufig zur Datenübertragung in Webanwendungen verwendet. Python stellt das JSON-Modul zum Parsen und Generieren von JSON bereit.

JSON analysieren:

Sie können einen JSON-String mit json.loads() in ein Python-Wörterbuch konvertieren.

import json

json_data = '{ "name": "John", "age": 30, "city": "New York" }'
parsed_data = json.loads(json_data)

print(parsed_data['age'])  # Output: 30
Nach dem Login kopieren

Konvertieren von Python-Objekten in JSON:

Sie können Python-Objekte (z. B. Diktat, Liste, Tupel) auch mit json.dumps() in einen JSON-String konvertieren.

Beispiel:

import json

python_obj = {"name": "John", "age": 30, "city": "New York"}
json_string = json.dumps(python_obj)

print(json_string)  # Output: {"name": "John", "age": 30, "city": "New York"}
Nach dem Login kopieren

JSON-Ausgabe formatieren und anpassen:

Sie können die JSON-Zeichenfolge besser lesbar machen, indem Sie den Parameter „indent“ verwenden:

json_string = json.dumps(python_obj, indent=4)
print(json_string)
Nach dem Login kopieren

Dies gibt eine gut formatierte JSON-Zeichenfolge aus:

{
    "name": "John",
    "age": 30,
    "city": "New York"
}
Nach dem Login kopieren

3. Python Math: Mathematische Operationen durchführen

Python bietet sowohl integrierte Funktionen als auch das Mathematikmodul zur Ausführung einer Vielzahl mathematischer Aufgaben.

Grundlegende mathematische Funktionen:

min() und max(): So finden Sie die Minimal- und Maximalwerte in einer Iteration:

print(min(5, 10, 25))  # Output: 5
print(max(5, 10, 25))  # Output: 25
Nach dem Login kopieren

abs(): Gibt den absoluten Wert einer Zahl zurück:

print(abs(-7.25))  # Output: 7.25
Nach dem Login kopieren

pow(): Berechnet die Potenz einer Zahl:

print(pow(4, 3))  # Output: 64 (4 to the power of 3)
Nach dem Login kopieren

Das Mathematikmodul:

Für fortgeschrittene mathematische Operationen bietet das Mathematikmodul einen umfangreichen Funktionsumfang.

  • Quadratwurzel: Mit math.sqrt():
import math

print(math.sqrt(64))  # Output: 8.0
Nach dem Login kopieren
  • Decke und Boden: Rundet eine Zahl auf oder ab:
print(math.ceil(1.4))  # Output: 2
print(math.floor(1.4))  # Output: 1
Nach dem Login kopieren
  • PI-Konstante: Zugriff auf den Wert von π:
print(math.pi)  # Output: 3.141592653589793
Nach dem Login kopieren

4. Arbeiten mit Datumsangaben: Zeitverwaltung in Python

Das Datetime-Modul von Python hilft bei der Verwaltung von Datums- und Uhrzeitangaben. Sie können das aktuelle Datum generieren, bestimmte Komponenten (wie Jahr, Monat, Tag) extrahieren oder Datumsobjekte bearbeiten.

Abrufen des aktuellen Datums und der aktuellen Uhrzeit:

Die Funktion datetime.now() gibt das aktuelle Datum und die aktuelle Uhrzeit zurück.

import datetime

current_time = datetime.datetime.now()
print(current_time)
# Output: 2024-09-06 05:15:51.590708 (example)
Nach dem Login kopieren

Ein bestimmtes Datum erstellen:

Sie können ein benutzerdefiniertes Datum mit dem datetime()-Konstruktor erstellen.

custom_date = datetime.datetime(2020, 5, 17)
print(custom_date)  # Output: 2020-05-17 00:00:00
Nach dem Login kopieren

Datumsangaben mit strftime() formatieren:

Sie können Datumsobjekte mit strftime() in Zeichenfolgen formatieren.

Beispiel:

formatted_date = custom_date.strftime("%B %d, %Y")
print(formatted_date)  # Output: May 17, 2020
Nach dem Login kopieren

Hier ist eine Tabelle mit einigen gängigen Formatcodes, die in strftime() verwendet werden:

Directive Description Example
%a Short weekday Wed
%A Full weekday Wednesday
%b Short month name Dec
%B Full month name December
%Y Year (full) 2024
%H Hour (24-hour format) 17
%I Hour (12-hour format) 05

Polymorphism in Python

Polymorphism refers to the ability of different objects to be treated as instances of the same class through a common interface. It allows methods to do different things based on the object it is acting upon.

Method Overriding
In Python, polymorphism is often achieved through method overriding. A subclass can provide a specific implementation of a method that is already defined in its superclass.

Example:

class Animal:
    def make_sound(self):
        pass

class Dog(Animal):
    def make_sound(self):
        return "Woof!"

class Cat(Animal):
    def make_sound(self):
        return "Meow!"

# Using polymorphism
def animal_sound(animal):
    print(animal.make_sound())

dog = Dog()
cat = Cat()

animal_sound(dog)  # Output: Woof!
animal_sound(cat)  # Output: Meow!
Nach dem Login kopieren

In the above example, animal_sound() can handle both Dog and Cat objects because they both implement the make_sound() method, demonstrating polymorphism.

Operator Overloading

Polymorphism also allows you to define how operators behave with user-defined classes by overloading them.

Example:

class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __add__(self, other):
        return Vector(self.x + other.x, self.y + other.y)

    def __repr__(self):
        return f"Vector({self.x}, {self.y})"

v1 = Vector(2, 3)
v2 = Vector(4, 1)
v3 = v1 + v2

print(v3)  # Output: Vector(6, 4)
Here, the + operator is overloaded to handle Vector objects, allowing us to add vectors using the + operator.

2. Iterators in Python
An iterator is an object that allows you to traverse through a container, such as a list or tuple, and retrieve elements one by one. Python iterators implement two main methods: __iter__() and __next__().

Creating an Iterator
You can create your own iterator by defining a class with __iter__() and __next__() methods.

Example:

python
Copy code
class CountDown:
    def __init__(self, start):
        self.start = start

    def __iter__(self):
        return self

    def __next__(self):
        if self.start <= 0:
            raise StopIteration
        current = self.start
        self.start -= 1
        return current

# Using the iterator

cd = CountDown(5)
for number in cd:
    print(number)
# Output: 5, 4, 3, 2, 1
Nach dem Login kopieren

In this example, CountDown is an iterator that counts down from a starting number to 1.

Using Built-in Iterators
Python provides built-in iterators such as enumerate(), map(), and filter().

Example:

numbers = [1, 2, 3, 4, 5]
squared = map(lambda x: x ** 2, numbers)

for num in squared:
    print(num)
# Output: 1, 4, 9, 16, 25
Nach dem Login kopieren

Here, map() applies a function to all items in the list and returns an iterator.

Scope in Python

Scope determines the visibility of variables in different parts of the code. Python uses the LEGB rule to resolve names: Local, Enclosing, Global, and Built-in.

Local Scope

Variables created inside a function are local to that function.

Example:

def my_func():
    x = 10  # Local variable
    print(x)

my_func()
# Output: 10
Nach dem Login kopieren

Here, x is accessible only within my_func().

Global Scope

Variables created outside any function are global and accessible from anywhere in the code.

Example:

Copy code
x = 20  # Global variable

def my_func():
    print(x)

my_func()
print(x)
# Output: 20, 20
Nach dem Login kopieren

Enclosing Scope

In nested functions, an inner function can access variables from its enclosing (outer) function.

Example:

def outer_func():
    x = 30

    def inner_func():
        print(x)  # Accessing variable from outer function

    inner_func()

outer_func()
# Output: 30
Nach dem Login kopieren

Global Keyword

To modify a global variable inside a function, use the global keyword.

Example:

x = 50

def my_func():
    global x
    x = 60

my_func()
print(x)
# Output: 60
Nach dem Login kopieren

Nonlocal Keyword

The nonlocal keyword allows you to modify a variable in the nearest enclosing scope that is not global.

Example:

def outer_func():
    x = 70

    def inner_func():
        nonlocal x
        x = 80

    inner_func()
    print(x)

outer_func()
# Output: 80
Nach dem Login kopieren

In this example, nonlocal allows inner_func() to modify the x variable in outer_func().

Check out my #100daysofMiva repo on GitHub. Follow, Star and Share.

Das obige ist der detaillierte Inhalt vonTag der #daysofMiva || Beherrschung von Python-Modulen, JSON, Mathematik und Datumsangaben. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage