Datenqualität ist von größter Bedeutung geworden, da Unternehmen zunehmend auf datengesteuerte Entscheidungen angewiesen sind. Bei der Gewährleistung der Datenintegrität geht es nicht nur um die Verfügbarkeit der Daten, sondern auch um deren Genauigkeit, Konsistenz und Zuverlässigkeit. Um dies zu erreichen, wurden verschiedene Tools entwickelt, unter denen Soda und Great Expectations als beliebte Lösungen zur Datenqualitätssicherung hervorstechen. In diesem Artikel werden beide Tools verglichen und ihre Stärken und Schwächen hervorgehoben, damit Sie herausfinden können, welches am besten zu Ihren Anforderungen passt.
Bevor wir uns mit dem Vergleich befassen, werfen wir einen kurzen Blick darauf, warum die Datenqualitätssicherung so wichtig ist. Daten von schlechter Qualität können zu Folgendem führen:
Angesichts dieser potenziellen Auswirkungen ist die Sicherstellung der Datenqualität in der gesamten Datenpipeline von entscheidender Bedeutung.
Soda, eine Datenüberwachungsplattform, konzentriert sich auf Einfachheit und Benutzerfreundlichkeit, insbesondere für Dateningenieure und Analysten. Es bietet sofort einsatzbereite Lösungen zur Überwachung von Daten auf Inkonsistenzen und Anomalien und stellt sicher, dass Sie benachrichtigt werden, wenn etwas nicht stimmt.
Intuitive Benutzeroberfläche und Befehlszeilenschnittstelle: Soda bietet eine unkomplizierte Benutzeroberfläche für technisch nicht versierte Benutzer und eine CLI für diejenigen, die lieber in einer Code-First-Umgebung arbeiten möchten.
Prüfungen und Überwachung: Sie definieren „Prüfungen“, um die Daten auf eine Reihe potenzieller Probleme wie fehlende Werte, Duplikate oder Schemaverletzungen zu überwachen. Soda löst automatisch Warnungen aus, wenn diese Prüfungen fehlschlagen.
Warnungen und Benachrichtigungen: Soda lässt sich in beliebte Messaging-Dienste (Slack, Microsoft Teams usw.) integrieren, um sicherzustellen, dass Sie in Echtzeit benachrichtigt werden.
Einfache Konfiguration: Die Konfiguration ist YAML-basiert, sodass benutzerdefinierte Prüfungen einfach eingerichtet werden können.
Great Expectations ist ein Open-Source-Framework, das speziell für die Datenvalidierung und -dokumentation entwickelt wurde. Es ist flexibel und hochgradig konfigurierbar, was es zu einer besseren Wahl für fortgeschrittene Benutzer oder diejenigen macht, die mehr Kontrolle über ihre Datenqualitätsprozesse benötigen.
Anpassbare Erwartungen: Mit Great Expectations können Sie eine Reihe von „Erwartungen“ oder Regeln definieren, die Ihre Daten erfüllen müssen. Diese Erwartungen können so einfach oder komplex wie nötig sein und alles von einfachen Nullprüfungen bis hin zu detaillierten statistischen Validierungen abdecken.
Automatisierte Datendokumentation: Eine herausragende Funktion ist die Fähigkeit von Great Expectations, automatisch Datendokumentation zu erstellen, die für Prüfprotokolle und Compliance hilfreich ist.
Datenprofilierung: Great Expectations kann Datensätze profilieren, um Ihnen zu helfen, die Verteilung, Muster und Qualität Ihrer Daten im Zeitverlauf zu verstehen.
Integration mit Datenpipelines: Das Framework lässt sich reibungslos in viele moderne Datenplattformen wie Apache Airflow, dbt und Prefect integrieren.
Hoch konfigurierbar: Fortgeschrittene Benutzer werden die Möglichkeit zu schätzen wissen, Tests und Validierungen auf einer sehr detaillierten Ebene mithilfe von Python-Code zu konfigurieren.
Feature | Soda | Great Expectations |
---|---|---|
Ease of Use | Simple to set up and use | Requires more technical expertise |
Configuration | YAML-based | Python-based, highly customizable |
Real-time Monitoring | Yes, with alerting integrations | No real-time alerting out of the box |
Documentation | Basic | Automated and detailed documentation |
Integration | Integrates with Slack, Teams, etc. | Integrates with Airflow, dbt, Prefect |
Customization | Limited | Highly customizable with Python |
Echtzeitüberwachung
Das obige ist der detaillierte Inhalt vonGewährleistung der Datenintegrität: Vergleich von Soda und große Erwartungen an die Qualitätssicherung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!