Heim > Backend-Entwicklung > Python-Tutorial > Geschützte ML-APIs mit Flama JWT-Authentifizierung

Geschützte ML-APIs mit Flama JWT-Authentifizierung

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Freigeben: 2024-09-12 10:21:10
Original
601 Leute haben es durchsucht

Sie haben wahrscheinlich bereits von der jüngsten Version von Flama 1.7 gehört, die einige aufregende neue Funktionen mit sich brachte, die Sie bei der Entwicklung und Produktion Ihrer ML-APIs unterstützen. Dieser Beitrag ist genau einem der wichtigsten Highlights dieser Version gewidmet: Unterstützung für JWT-Authentifizierung. Bevor wir jedoch anhand eines praktischen Beispiels in die Details eintauchen, empfehlen wir Ihnen, die folgenden Ressourcen im Auge zu behalten (und sich mit ihnen vertraut zu machen, falls Sie dies noch nicht getan haben):

  • Offizielle Flama-Dokumentation: Flama-Dokumentation
  • Beitrag zur Einführung von Flama für ML-APIs: Einführung in Flama für robuste APIs für maschinelles Lernen

Jetzt beginnen wir mit der neuen Funktion und sehen, wie Sie Ihre API-Endpunkte mit tokenbasierter Authentifizierung über Header oder Cookies sichern können.

Inhaltsverzeichnis

Dieser Beitrag ist wie folgt aufgebaut:

  • Was ist JSON Web Token (JWT)?
  • JWT-Authentifizierung mit Flama
    • Richten Sie die Entwicklungsumgebung ein
    • Grundanwendung
    • Flama JWT-Komponente
    • Geschützte Endpunkte
    • Ausführen der Anwendung
    • Anmeldeendpunkt
  • Schlussfolgerungen
  • Unterstützen Sie unsere Arbeit
  • Referenzen
  • Über die Autoren

Was ist ein JSON-Web-Token?

Wenn Sie bereits mit dem Konzept des JSON Web Token (JWT) und seiner Funktionsweise vertraut sind, können Sie diesen Abschnitt gerne überspringen und direkt mit der Implementierung der JWT-Authentifizierung mit Flama fortfahren. Ansonsten werden wir versuchen, Ihnen kurz und bündig zu erklären, was JWT ist und warum es für Autorisierungszwecke so nützlich ist.

Kurze Einführung

Wir können mit der offiziellen Definition im RFC 7519-Dokument beginnen:

JSON Web Token (JWT) ist ein kompaktes, URL-sicheres Mittel zur Darstellung
Ansprüche, die zwischen zwei Parteien übertragen werden sollen. Die Ansprüche in einem JWT
werden als JSON-Objekt codiert, das als Nutzlast eines JSON
verwendet wird Web Signature (JWS)-Struktur oder als Klartext eines JSON-Webs
Verschlüsselungsstruktur (JWE), die eine digitale Übermittlung der Ansprüche ermöglicht
signiert oder integritätsgeschützt mit einem Nachrichtenauthentifizierungscode
(MAC) und/oder verschlüsselt.

In einfachen Worten ist JWT also ein offener Standard, der eine Möglichkeit zur Übertragung von Informationen zwischen zwei Parteien in Form eines JSON-Objekts definiert. Die übertragenen Informationen werden digital signiert, um ihre Integrität und Authentizität sicherzustellen. Aus diesem Grund sind Autorisierungszwecke einer der Hauptanwendungsfälle von JWT.

Ein prototypischer JWT-basierter Authentifizierungsfluss würde etwa so aussehen:

  • Ein Benutzer meldet sich bei einem System an und erhält ein JWT-Token.
  • Der Benutzer sendet dieses Token bei jeder weiteren Anfrage an den Server.
  • Der Server überprüft das Token und gewährt Zugriff auf die angeforderte Ressource, wenn das Token gültig ist.
  • Wenn das Token ungültig ist, verweigert der Server den Zugriff auf die Ressource.

JWT-Tokens sind jedoch nicht nur zur Identifizierung von Benutzern nützlich, sondern können auch zum sicheren Austausch von Informationen zwischen verschiedenen Diensten über die Nutzlast des Tokens verwendet werden. Da die Signatur des Tokens außerdem anhand des Headers und der Nutzlast berechnet wird, kann der Empfänger außerdem die Integrität des Tokens überprüfen und sicherstellen, dass es während der Übertragung nicht verändert wurde.

JWT-Struktur

Ein JWT wird als Folge von URL-sicheren Teilen dargestellt, die durch Punkte (.) getrennt sind, wobei jeder Teil ein base64url-codiertes JSON-Objekt enthält. Die Anzahl der Teile im JWT kann je nach verwendeter Darstellung variieren, entweder JWS (JSON Web Signature) RFC-7515 oder JWE (JSON Web Encryption) RFC-7516.
Ab diesem Zeitpunkt können wir davon ausgehen, dass wir JWS verwenden, die häufigste Darstellung für JWT-Token. In diesem Fall besteht ein JWT-Token aus drei Teilen:

  • Header: Enthält Metadaten über das Token und die darauf angewendeten kryptografischen Operationen.
  • Nutzlast: Enthält die Ansprüche (Informationen), die der Token trägt.
  • Signatur: Stellt die Integrität des Tokens sicher und wird verwendet, um zu überprüfen, ob der Absender des Tokens derjenige ist, für den er sich ausgibt.

Daher lautet die Syntax eines prototypischen JWS-JSON unter Verwendung der abgeflachten JWS-JSON-Serialisierung wie folgt (weitere Informationen finden Sie in RFC-7515 Abschnitt 7.2.2):

{
   "payload":"<payload contents>",
   "header":<header contents>,
   "signature":"<signature contents>"
}
Nach dem Login kopieren

In der JWS Compact Serialization wird das JTW als die Verkettung dargestellt:

BASE64URL(UTF8(JWS Header)) || '.' || BASE64URL(JWS Payload) || '.' || BASE64URL(JWS Signature)  
Nach dem Login kopieren

Ein Beispiel für einen JWT-Token würde so aussehen (aus einem der Flama-Tests hier):

eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJkYXRhIjogeyJmb28iOiAiYmFyIn0sICJpYXQiOiAwfQ==.J3zdedMZSFNOimstjJat0V28rM_b1UU62XCp9dg_5kg=
Nach dem Login kopieren

Der Header

Für ein allgemeines JWT-Objekt kann der Header eine Vielzahl von Feldern enthalten (z. B. eine Beschreibung der auf das Token angewendeten kryptografischen Operationen), abhängig davon, ob das JWT ein JWS oder JWE ist. Es gibt jedoch einige Felder, die beiden Fällen gemeinsam sind und auch am häufigsten verwendet werden:

  • alg: The algorithm used to sign the token, e.g. HS256, HS384, HS512. To see the list of supported algorithms in flama, have a look at it here.
  • typ: The type parameter is used to declare the media type of the JWT. If present, it is recommended to have the value JWT to indicate that the object is a JWT. For more information on this field, see RFC-7519 Sec. 5.1.
  • cty: The content type is used to communicate structural information about the JWT. For example, if the JWT is a Nested JWT, the value of this field would be JWT. For more information on this field, see RFC-7519 Sec. 5.2.

The Payload

The payload contains the claims (information) that the token is carrying. The claims are represented as a JSON object, and they can be divided into three categories, according to the standard RFC-7519 Sec. 4:

  • Registered claims: These are a set of predefined claims that are not mandatory but recommended. Some of the most common ones are iss (issuer), sub (subject), aud (audience), exp (expiration time), nbf (not before), iat (issued at), and jti (JWT ID). For a detailed explanation of each of these claims, see RFC-7519 Sec. 4.1.
  • Public claims: These are claims that are defined by the user and can be used to share information between different services.
  • Private claims: These are claims that are defined by the user and are intended to be shared between the parties that are involved in the communication.

The Signature

The signature is used to ensure the integrity of the token and to verify that the sender of the token is who it claims to be. The signature is calculated using the header and the payload, and it is generated using the algorithm specified in the header. The signature is then appended to the token to create the final JWT.

Implementing JWT Authentication with Flama

Having introduced the concept of JWT, its potential applications, besides a prototypical authentication flow, we can now move on to the implementation of a JWT-authenticated API using Flama. But, before we start, if you need to review the basics on how to create a simple API with flama, or how to run the API once you already have the code ready, then you might want to check out the quick start guide. There, you'll find the fundamental concepts and steps required to follow this post. Now, without further ado, let's get started with the implementation.

Setting up the development environment

Our first step is to create our development environment, and install all required dependencies for this project. The good thing is that for this example we only need to install flama to have all the necessary tools to implement JWT authentication. We'll be using poetry to manage our dependencies, but you can also use pip if you prefer:

poetry add flama[full]
Nach dem Login kopieren

If you want to know how we typically organise our projects, have a look at our previous post here, where we explain in detail how to set up a python project with poetry, and the project folder structure we usually follow.

Base application

Let's start with a simple application that has a single public endpoint. This endpoint will return a brief description of the API.

from flama import Flama

app = Flama(
    title="JWT protected API",
    version="1.0.0",
    description="JWT Authentication with Flama ?",
    docs="/docs/",
)

@app.get("/public/info/", name="public-info")
def info():
    """
    tags:
        - Public
    summary:
        Ping
    description:
        Returns a brief description of the API
    responses:
        200:
            description:
                Successful ping.
    """
    return {"title": app.schema.title, "description": app.schema.description, "public": True}
Nach dem Login kopieren

If you want to run this application, you can save the code above in a file called main.py under the src folder, and then run the following command (remember to have the poetry environment activated, otherwise you'll need to prefix the command with poetry run):

flama run --server-reload src.main:app

INFO:     Started server process [3267]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
Nach dem Login kopieren

where the --server-reload flag is optional and is used to reload the server automatically when the code changes. This is very useful during development, but you can remove it if you don't need it. For a full list of the available options, you can run flama run --help, or check the documentation.

Authentication: Flama JWT Component

Ok, now that we have our base application running, let's add a new endpoint that requires authentication. To do this, we'll need to use the following flama functionality:

  • Components (specifically JWTComponent): They're the building blocks for dependency injection in flama.
  • Middlewares (specifically AuthenticationMiddleware): They're used as a processing layer between the incoming requests from clients and the responses sent by the server.

Let's proceed and modify our base application to include the JWT authentication as intended, and then we'll explain the code in more detail.

import uuid

from flama import Flama
from flama.authentication import AuthenticationMiddleware, JWTComponent
from flama.middleware import Middleware

JWT_SECRET_KEY = uuid.UUID(int=0).bytes  # The secret key used to signed the token
JWT_HEADER_KEY = "Authorization"  # Authorization header identifie
JWT_HEADER_PREFIX = "Bearer"  # Bearer prefix
JWT_ALGORITHM = "HS256"  # Algorithm used to sign the token
JWT_TOKEN_EXPIRATION = 300  # 5 minutes in seconds
JWT_REFRESH_EXPIRATION = 2592000  # 30 days in seconds
JWT_ACCESS_COOKIE_KEY = "access_token"
JWT_REFRESH_COOKIE_KEY = "refresh_token"

app = Flama(
    title="JWT-protected API",
    version="1.0.0",
    description="JWT Authentication with Flama ?",
    docs="/docs/",
)

app.add_component(
    JWTComponent(
        secret=JWT_SECRET_KEY,
        header_key=JWT_HEADER_KEY,
        header_prefix=JWT_HEADER_PREFIX,
        cookie_key=JWT_ACCESS_COOKIE_KEY,
    )
)

app.add_middleware(
    Middleware(AuthenticationMiddleware),
)

# The same code as before here
# ...
Nach dem Login kopieren

Although we've decided to add the component and middleware after the initialisation of the app, you can also add them directly to the Flama constructor by passing the components and middlewares arguments:

app = Flama(
    title="JWT-protected API",
    version="1.0.0",
    description="JWT Authentication with Flama ?",
    docs="/docs/",
    components=[
        JWTComponent(
            secret=JWT_SECRET_KEY,
            header_key=JWT_HEADER_KEY,
            header_prefix=JWT_HEADER_PREFIX,
            cookie_key=JWT_ACCESS_COOKIE_KEY,
        )
    ],
    middlewares=[
        Middleware(AuthenticationMiddleware),
    ]
)
Nach dem Login kopieren

This is just a matter of preference, and both ways are completely valid.

With the modifications introduced above, we can proceed to add a new (and JWT protected) endpoint. However, before we do that, let's briefly explain in more detail the functionality we've just introduced, namely components and middlewares.

Flama Components

As you might've already noticed, whenever we create a new application we're instantiating a Flama object. As the application grows, as is the case right now, also grows the need to add more dependencies to it. Without dependency injection (DI), this would mean that the Flama class would have to create and manage all its dependencies internally. This would make the class tightly coupled to specific implementations and harder to test or modify. With DI the dependencies are provided to the class from the outside, which decouples the class from specific implementations, making it more flexible and easier to test. And, this is where components come into play in flama.

In flama, a Component is a building block for dependency injection. It encapsulates logic that determines how specific dependencies should be resolved when the application runs. Components can be thought of as self-contained units responsible for providing the necessary resources that the application's constituents need. Each Component in flama has a unique identity, making it easy to look up and inject the correct dependency during execution. Components are highly flexible, allowing you to handle various types of dependencies, whether they're simple data types, complex objects, or asynchronous operations. There are several built-in components in flama, although in this post we're going to exclusively focus on the JWTComponent, which (as all others) derives from the Component class.

The JWTComponent contains all the information and logic necessary for extracting a JWT from either the headers or cookies of an incoming request, decoding it, and then validating its authenticity. The component is initialised with the following parameters:

  • secret: The secret key used to decode the JWT.
  • header_key: The key used to identify the JWT in the request headers.
  • header_prefix: The prefix used to identify the JWT in the request headers.
  • cookie_key: The key used to identify the JWT in the request cookies.

In the code above, we've initialised the JWTComponent with some dummy values for the secret key, header key, header prefix, and cookie key. In a real-world scenario, you should replace these values with your own secret key and identifiers.

Flama Middlewares

Middleware is a crucial concept that acts as a processing layer between the incoming requests from clients and the responses sent by the server. In simpler terms, middleware functions as a gatekeeper or intermediary that can inspect, modify, or act on requests before they reach the core logic of your application, and also on the responses before they are sent back to the client.

In flama, middleware is used to handle various tasks that need to occur before a request is processed or after a response is generated. In this particular case, the task we want to handle is the authentication of incoming requests using JWT. To achieve this, we're going to use the built-in class AuthenticationMiddleware. This middleware is designed to ensure that only authorised users can access certain parts of your application. It works by intercepting incoming requests, checking for the necessary credentials (such as a valid JWT token), and then allowing or denying access based on the user's permissions which are encoded in the token.

Here’s how it works:

  • Initialization: The middleware is initialized with the Flama application instance. This ties the middleware to your app, so it can interact with incoming requests and outgoing responses.
  • Handling Requests: The __call__ method of the middleware is called every time a request is made to your application. If the request type is http or websocket, the middleware checks if the route (the path the request is trying to access) requires any specific permissions.
  • Permission Check: The middleware extracts the required permissions for the route from the route's tags. If no permissions are required, the request is passed on to the next layer of the application. If permissions are required, the middleware attempts to resolve a JWT token from the request. This is done using the previously discussed JWTComponent.
  • Validating Permissions: Once the JWT token is resolved, the middleware checks the permissions associated with the token against those required by the route. If the user’s permissions match or exceed the required permissions, the request is allowed to proceed. Otherwise, the middleware returns a 403 Forbidden response, indicating that the user does not have sufficient permissions.
  • Handling Errors: If the JWT token is invalid or cannot be resolved, the middleware catches the exception and returns an appropriate error response, such as 401 Unauthorized.

Adding a protected endpoint

By now, we should have a pretty solid understanding on what our code does, and how it does it. Nevertheless, we still need to see what we have to do to add a protected endpoint to our application. Let's do it:

@app.get("/private/info/", name="private-info", tags={"permissions": ["my-permission-name"]})
def protected_info():
    """
    tags:
        - Private
    summary:
        Ping
    description:
        Returns a brief description of the API
    responses:
        200:
            description:
                Successful ping.
    """
    return {"title": app.schema.title, "description": app.schema.description, "public": False}
Nach dem Login kopieren

And that's it! We've added a new endpoint that requires authentication to access. The functionality is exactly the same as the previous endpoint, but this time we've added the tags parameter to the @app.get decorator. The tag parameter can be used to specify additional metadata for an endpoint. But, if we use the special key permissions whilst using the AuthenticationMiddleware, we can specify the permissions required to access the endpoint. In this case, we've set the permissions to ["my-permission-name"], which means that only users with the permission my-permission-name will be able to access this endpoint. If a user tries to access the endpoint without the required permission, they will receive a 403 Forbidden response.

Running the application

If we put all the pieces together, we should have a fully functional application that has a public endpoint and a private endpoint that requires authentication. The full code should look something like this:

import uuid

from flama import Flama
from flama.authentication import AuthenticationMiddleware, JWTComponent
from flama.middleware import Middleware

JWT_SECRET_KEY = uuid.UUID(int=0).bytes  # The secret key used to signed the token
JWT_HEADER_KEY = "Authorization"  # Authorization header identifie
JWT_HEADER_PREFIX = "Bearer"  # Bearer prefix
JWT_ALGORITHM = "HS256"  # Algorithm used to sign the token
JWT_TOKEN_EXPIRATION = 300  # 5 minutes in seconds
JWT_REFRESH_EXPIRATION = 2592000  # 30 days in seconds
JWT_ACCESS_COOKIE_KEY = "access_token"
JWT_REFRESH_COOKIE_KEY = "refresh_token"

app = Flama(
    title="JWT-protected API",
    version="1.0.0",
    description="JWT Authentication with Flama ?",
    docs="/docs/",
)

app.add_component(
    JWTComponent(
        secret=JWT_SECRET_KEY,
        header_key=JWT_HEADER_KEY,
        header_prefix=JWT_HEADER_PREFIX,
        cookie_key=JWT_ACCESS_COOKIE_KEY,
    )
)

app.add_middleware(
    Middleware(AuthenticationMiddleware),
)

@app.get("/public/info/", name="public-info")
def info():
    """
    tags:
        - Public
    summary:
        Info
    description:
        Returns a brief description of the API
    responses:
        200:
            description:
                Successful ping.
    """
    return {"title": app.schema.title, "description": app.schema.description, "public": True}


@app.get("/private/info/", name="private-info", tags={"permissions": ["my-permission-name"]})
def protected_info():
    """
    tags:
        - Private
    summary:
        Info
    description:
        Returns a brief description of the API
    responses:
        200:
            description:
                Successful ping.
    """
    return {"title": app.schema.title, "description": app.schema.description, "public": False}
Nach dem Login kopieren

Running the application as before, we should see the following output:

flama run --server-reload src.main:app

INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO:     Started reloader process [48145] using WatchFiles
INFO:     Started server process [48149]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
Nach dem Login kopieren

If we navigate with our favourite browser to http://127.0.0.1:8000/docs/ we should see the documentation of our API as shown below:

Protected ML APIs with Flama JWT Authentication

As we can already expect, if we send a request to the public endpoint /public/info/ we should receive a successful response:

curl --request GET \
  --url http://localhost:8000/public/info/ \
  --header 'Accept: application/json'
{"title":"JWT protected API","description":"JWT Authentication with Flama ?","public":true}
Nach dem Login kopieren

However, if we try to access the private endpoint /private/info/ without providing a valid JWT token, we should receive a 401 Unauthorized response:

curl --request GET \
  --url http://localhost:8000/private/info/ \
  --header 'Accept: application/json'
{"status_code":401,"detail":"Unauthorized","error":null}% 
Nach dem Login kopieren

Thus, we can say that the JWT authentication is working as expected, and only users with a valid JWT token will be able to access the private endpoint.

Adding the login endpoint

As we've just seen, we have a private endpoint which requires a valid JWT token to be accessed. But, how do we get this token? The answer is simple: we need to create a login endpoint that will authenticate the user and return a valid JWT token. To do this, we're going to define the schemas for the input and output of the login endpoint (feel free to use your own schemas if you prefer, for instance, adding more fields to the input schema such as username or email):

import uuid
import typing
import pydantic

class User(pydantic.BaseModel):
    id: uuid.UUID
    password: typing.Optional[str] = None


class UserToken(pydantic.BaseModel):
    id: uuid.UUID
    token: str
Nach dem Login kopieren

Now, let's add the login endpoint to our application:

import http

from flama import types
from flama.authentication.jwt import JWT
from flama.http import APIResponse

@app.post("/auth/", name="signin")
def signin(user: types.Schema[User]) -> types.Schema[UserToken]:
    """
    tags:
        - Public
    summary:
        Authenticate
    description:
        Returns a user token to access protected endpoints
    responses:
        200:
            description:
                Successful ping.
    """
    token = (
        JWT(
            header={"alg": JWT_ALGORITHM},
            payload={
                "iss": "vortico",
                "data": {"id": str(user["id"]), "permissions": ["my-permission-name"]},
            },
        )
        .encode(JWT_SECRET_KEY)
        .decode()
    )

    return APIResponse(
        status_code=http.HTTPStatus.OK, schema=types.Schema[UserToken], content={"id": str(user["id"]), "token": token}
    )
Nach dem Login kopieren

In this code snippet, we've defined a new endpoint /auth/ that receives a User object as input and returns a UserToken object as output. The User object contains the id of the user and the password (which is optional for this example, since we're not going to be comparing it with any stored password). The UserToken object contains the id of the user and the generated token that will be used to authenticate the user in the private endpoints. The token is generated using the JWT class, and contains the permissions granted to the user, in this case, the permission my-permission-name, which will allow the user to access the private endpoint /private/info/.

Now, let's test the login endpoint to see if it's working as expected. For this, we can proceed via the /docs/ page:

Protected ML APIs with Flama JWT Authentication

Or, we can use curl to send a request to the login endpoint:

curl --request POST \
  --url http://localhost:8000/auth/ \
  --header 'Accept: application/json' \
  --header 'Content-Type: application/json' \
  --data '{
  "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
  "password": "string"
}'
Nach dem Login kopieren

which should return a response similar to this:

{"id":"497f6eca-6276-4993-bfeb-53cbbbba6f08","token":"eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJkYXRhIjogeyJpZCI6ICI0OTdmNmVjYS02Mjc2LTQ5OTMtYmZlYi01M2NiYmJiYTZmMDgiLCAicGVybWlzc2lvbnMiOiBbIm15LXBlcm1pc3Npb24tbmFtZSJdfSwgImlhdCI6IDE3MjU5ODk5NzQsICJpc3MiOiAidm9ydGljbyJ9.vwwgqahgtALckMAzQHWpNDNwhS8E4KAGwNiFcqEZ_04="}
Nach dem Login kopieren

That string is the JWT token that we can use to authenticate the user in the private endpoint. Let's try to access the private endpoint using the token:

curl --request GET \
  --url http://localhost:8000/private/info/ \
  --header 'Accept: application/json' \
  --header 'Authorization: Bearer eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJkYXRhIjogeyJpZCI6ICI0OTdmNmVjYS02Mjc2LTQ5OTMtYmZlYi01M2NiYmJiYTZmMDgiLCAicGVybWlzc2lvbnMiOiBbIm15LXBlcm1pc3Npb24tbmFtZSJdfSwgImlhdCI6IDE3MjU5ODk5NzQsICJpc3MiOiAidm9ydGljbyJ9.vwwgqahgtALckMAzQHWpNDNwhS8E4KAGwNiFcqEZ_04='
Nach dem Login kopieren

which now returns a successful response:

{"title":"JWT protected API","description":"JWT Authentication with Flama ?","public":false}
Nach dem Login kopieren

And that's it! We've successfully implemented JWT authentication in our Flama application. We now have a public endpoint that can be accessed without authentication, a private endpoint that requires a valid JWT token to be accessed, and a login endpoint that generates a valid JWT token for the user.

Conclusions

The privatisation of some endpoints (even all at some instances) is a common requirement in many applications, even more so when dealing with sensitive data as is often the case in Machine Learning APIs which process personal or financial information, to name some examples. In this post, we've covered the fundamentals of token-based authentication for APIs, and how this can be implemented without much of a hassle using the new features introduced in the latest release of flama (introduced in a previous post). Thanks to the JWTComponent and AuthenticationMiddleware, we can secure our API endpoints and control the access to them based on the permissions granted to the user, and all this with just a few modifications to our base unprotected application.

We hope you've found this post useful, and that you're now ready to implement JWT authentication in your own flama applications. If you have any questions or comments, feel free to reach out to us. We're always happy to help!

Stay tuned for more posts on flama and other exciting topics in the world of AI and software development. Until next time!

Support our work

If you like what we do, there is a free and easy way to support our work. Gift us a ⭐ at Flama.

GitHub ⭐'s mean a world to us, and give us the sweetest fuel to keep working on it to help others on its journey to build robust Machine Learning APIs.

You can also follow us on ?, where we share our latest news and updates, besides interesting threads on AI, software development, and much more.

References

  • Flama documentation
  • Flama GitHub repository
  • Flama PyPI package

About the authors

  • Vortico: We're specialised in software development to help businesses enhance and expand their AI and technology capabilities.

Das obige ist der detaillierte Inhalt vonGeschützte ML-APIs mit Flama JWT-Authentifizierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage