


Eine Kurzanleitung zum Python-Multiprocessing-Modul mit Beispielen
Einführung
Mit dem Multiprocessing-Modul in Python können Sie Prozesse erstellen und verwalten und so die Vorteile mehrerer Prozessoren auf einer Maschine voll ausnutzen. Es hilft Ihnen, eine parallele Ausführung zu erreichen, indem für jeden Prozess separate Speicherbereiche verwendet werden, im Gegensatz zum Threading, bei dem Threads denselben Speicherbereich gemeinsam nutzen. Hier ist eine Liste häufig verwendeter Klassen und Methoden im Multiprocessing-Modul mit kurzen Beispielen.
1. Prozess
Die Process-Klasse ist der Kern des Multiprocessing-Moduls und ermöglicht Ihnen das Erstellen und Ausführen neuer Prozesse.
from multiprocessing import Process def print_numbers(): for i in range(5): print(i) p = Process(target=print_numbers) p.start() # Starts a new process p.join() # Waits for the process to finish
2. start()
Startet die Aktivität des Prozesses.
p = Process(target=print_numbers) p.start() # Runs the target function in a separate process
3. beitreten([timeout])
Blockiert den aufrufenden Prozess, bis der Prozess, dessen join()-Methode aufgerufen wird, beendet wird. Optional können Sie ein Timeout angeben.
p = Process(target=print_numbers) p.start() p.join(2) # Waits up to 2 seconds for the process to finish
4. is_alive()
Gibt True zurück, wenn der Prozess noch läuft.
p = Process(target=print_numbers) p.start() print(p.is_alive()) # True if the process is still running
5. current_process()
Gibt das aktuelle Prozessobjekt zurück, das den aufrufenden Prozess darstellt.
from multiprocessing import current_process def print_current_process(): print(current_process()) p = Process(target=print_current_process) p.start() # Prints the current process info
6. active_children()
Gibt eine Liste aller aktuell aktiven Prozessobjekte zurück.
p1 = Process(target=print_numbers) p2 = Process(target=print_numbers) p1.start() p2.start() print(Process.active_children()) # Lists all active child processes
7. cpu_count()
Gibt die Anzahl der auf der Maschine verfügbaren CPUs zurück.
from multiprocessing import cpu_count print(cpu_count()) # Returns the number of CPUs on the machine
8. Pool
Ein Pool-Objekt bietet eine praktische Möglichkeit, die Ausführung einer Funktion über mehrere Eingabewerte hinweg zu parallelisieren. Es verwaltet einen Pool von Arbeitsprozessen.
from multiprocessing import Pool def square(n): return n * n with Pool(4) as pool: # Pool with 4 worker processes result = pool.map(square, [1, 2, 3, 4, 5]) print(result) # [1, 4, 9, 16, 25]
9. Warteschlange
Eine Warteschlange ist eine gemeinsam genutzte Datenstruktur, die es mehreren Prozessen ermöglicht, durch die Weitergabe von Daten zwischen ihnen zu kommunizieren.
from multiprocessing import Process, Queue def put_data(q): q.put([1, 2, 3]) def get_data(q): data = q.get() print(data) q = Queue() p1 = Process(target=put_data, args=(q,)) p2 = Process(target=get_data, args=(q,)) p1.start() p2.start() p1.join() p2.join()
10. Sperren
Eine Sperre stellt sicher, dass jeweils nur ein Prozess auf eine gemeinsam genutzte Ressource zugreifen kann.
from multiprocessing import Process, Lock lock = Lock() def print_numbers(): with lock: for i in range(5): print(i) p1 = Process(target=print_numbers) p2 = Process(target=print_numbers) p1.start() p2.start() p1.join() p2.join()
11. Wert und Array
Die Value- und Array-Objekte ermöglichen die gemeinsame Nutzung einfacher Datentypen und Arrays zwischen Prozessen.
from multiprocessing import Process, Value def increment(val): with val.get_lock(): val.value += 1 shared_val = Value('i', 0) processes = [Process(target=increment, args=(shared_val,)) for _ in range(10)] for p in processes: p.start() for p in processes: p.join() print(shared_val.value) # Output will be 10
12. Pfeife
Eine Pipe stellt einen bidirektionalen Kommunikationskanal zwischen zwei Prozessen bereit.
from multiprocessing import Process, Pipe def send_message(conn): conn.send("Hello from child") conn.close() parent_conn, child_conn = Pipe() p = Process(target=send_message, args=(child_conn,)) p.start() print(parent_conn.recv()) # Receives data from the child process p.join()
13. Manager
Mit einem Manager können Sie gemeinsame Objekte wie Listen und Wörterbücher erstellen, die mehrere Prozesse gleichzeitig ändern können.
from multiprocessing import Process, Manager def modify_list(shared_list): shared_list.append("New item") with Manager() as manager: shared_list = manager.list([1, 2, 3]) p = Process(target=modify_list, args=(shared_list,)) p.start() p.join() print(shared_list) # [1, 2, 3, "New item"]
14. Semaphor
Mit einem Semaphor können Sie den Zugriff auf eine Ressource steuern, sodass nur eine bestimmte Anzahl von Prozessen gleichzeitig darauf zugreifen kann.
from multiprocessing import Process, Semaphore import time sem = Semaphore(2) # Only 2 processes can access the resource def limited_access(): with sem: print("Accessing resource") time.sleep(2) processes = [Process(target=limited_access) for _ in range(5)] for p in processes: p.start() for p in processes: p.join()
Abschluss
Das Multiprocessing-Modul in Python ist darauf ausgelegt, die Vorteile mehrerer Prozessoren auf einer Maschine voll auszunutzen. Von der Erstellung und Verwaltung von Prozessen mit Process über die Steuerung gemeinsam genutzter Ressourcen mit Lock und Semaphore bis hin zur Erleichterung der Kommunikation über Queue und Pipe ist das Multiprocessing-Modul für die Parallelisierung von Aufgaben in Python-Anwendungen von entscheidender Bedeutung.
Das obige ist der detaillierte Inhalt vonEine Kurzanleitung zum Python-Multiprocessing-Modul mit Beispielen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.
