


Ich habe mit Streamlit in Snowflake (SiS) eine App zur Überprüfung der Tokenanzahl erstellt.
Einführung
Hallo, ich bin Vertriebsingenieur bei Snowflake. Einige meiner Erfahrungen und Experimente möchte ich in verschiedenen Beiträgen mit Ihnen teilen. In diesem Artikel zeige ich Ihnen, wie Sie mit Streamlit in Snowflake eine App erstellen, um die Anzahl der Token zu überprüfen und die Kosten für Cortex LLM abzuschätzen.
Hinweis: Dieser Beitrag stellt meine persönlichen Ansichten dar und nicht die von Snowflake.
Was ist Streamlit in Snowflake (SiS)?
Streamlit ist eine Python-Bibliothek, die es Ihnen ermöglicht, Web-UIs mit einfachem Python-Code zu erstellen, sodass kein HTML/CSS/JavaScript erforderlich ist. Beispiele finden Sie in der App-Galerie.
Streamlit in Snowflake ermöglicht Ihnen die Entwicklung und Ausführung von Streamlit-Webanwendungen direkt auf Snowflake. Es ist einfach mit nur einem Snowflake-Konto zu verwenden und eignet sich hervorragend für die Integration von Snowflake-Tabellendaten in Web-Apps.
Über Streamlit in Snowflake (Offizielle Snowflake-Dokumentation)
Was ist Schneeflocken-Cortex?
Snowflake Cortex ist eine Suite generativer KI-Funktionen in Snowflake. Mit Cortex LLM können Sie mit einfachen Funktionen in SQL oder Python große Sprachmodelle aufrufen, die auf Snowflake laufen.
Large Language Model (LLM)-Funktionen (Snowflake Cortex) (Offizielle Snowflake-Dokumentation)
Funktionsübersicht
Bild
Hinweis: Der Text im Bild stammt aus „The Spider's Thread“ von Ryunosuke Akutagawa.
Merkmale
- Benutzer können ein Cortex-LLM-Modell auswählen
- Zeichen- und Tokenanzahl für vom Benutzer eingegebenen Text anzeigen
- Zeigen Sie das Verhältnis von Token zu Zeichen an
- Berechnen Sie die geschätzten Kosten basierend auf den Snowflake-Guthabenpreisen
Hinweis: Cortex LLM-Preistabelle (PDF)
Voraussetzungen
- Snowflake-Konto mit Cortex LLM-Zugriff
- snowflake-ml-python 1.1.2 oder höher
Hinweis: Verfügbarkeit der Cortex LLM-Region (offizielle Snowflake-Dokumentation)
Quellcode
import streamlit as st from snowflake.snowpark.context import get_active_session import snowflake.snowpark.functions as F # Get current session session = get_active_session() # Application title st.title("Cortex AI Token Count Checker") # AI settings st.sidebar.title("AI Settings") lang_model = st.sidebar.radio("Select the language model you want to use", ("snowflake-arctic", "reka-core", "reka-flash", "mistral-large2", "mistral-large", "mixtral-8x7b", "mistral-7b", "llama3.1-405b", "llama3.1-70b", "llama3.1-8b", "llama3-70b", "llama3-8b", "llama2-70b-chat", "jamba-instruct", "gemma-7b") ) # Function to count tokens (using Cortex's token counting function) def count_tokens(model, text): result = session.sql(f"SELECT SNOWFLAKE.CORTEX.COUNT_TOKENS('{model}', '{text}') as token_count").collect() return result[0]['TOKEN_COUNT'] # Token count check and cost calculation st.header("Token Count Check and Cost Calculation") input_text = st.text_area("Select a language model from the left pane and enter the text you want to check for token count:", height=200) # Let user input the price per credit credit_price = st.number_input("Enter the price per Snowflake credit (in dollars):", min_value=0.0, value=2.0, step=0.01) # Credits per 1M tokens for each model (as of 2024/8/30, mistral-large2 is not supported) model_credits = { "snowflake-arctic": 0.84, "reka-core": 5.5, "reka-flash": 0.45, "mistral-large2": 1.95, "mistral-large": 5.1, "mixtral-8x7b": 0.22, "mistral-7b": 0.12, "llama3.1-405b": 3, "llama3.1-70b": 1.21, "llama3.1-8b": 0.19, "llama3-70b": 1.21, "llama3-8b": 0.19, "llama2-70b-chat": 0.45, "jamba-instruct": 0.83, "gemma-7b": 0.12 } if st.button("Calculate Token Count"): if input_text: # Calculate character count char_count = len(input_text) st.write(f"Character count of input text: {char_count}") if lang_model in model_credits: # Calculate token count token_count = count_tokens(lang_model, input_text) st.write(f"Token count of input text: {token_count}") # Ratio of tokens to characters ratio = token_count / char_count if char_count > 0 else 0 st.write(f"Token count / Character count ratio: {ratio:.2f}") # Cost calculation credits_used = (token_count / 1000000) * model_credits[lang_model] cost = credits_used * credit_price st.write(f"Credits used: {credits_used:.6f}") st.write(f"Estimated cost: ${cost:.6f}") else: st.warning("The selected model is not supported by Snowflake's token counting feature.") else: st.warning("Please enter some text.")
Abschluss
Diese App erleichtert die Schätzung der Kosten für LLM-Arbeitslasten, insbesondere bei Sprachen wie Japanisch, bei denen häufig eine Lücke zwischen der Zeichenanzahl und der Tokenanzahl besteht. Ich hoffe, Sie finden es nützlich!
Ankündigungen
Was gibt es Neues bei Snowflake? Updates auf X
Ich teile Snowflakes Neuigkeiten-Updates auf X. Bitte folgen Sie uns gerne, wenn Sie interessiert sind!
Englische Version
Snowflake What's New Bot (englische Version)
https://x.com/snow_new_en
Japanische Version
Snowflake What's New Bot (Japanische Version)
https://x.com/snow_new_jp
Änderungsverlauf
(20240914) Erster Beitrag
Originaler japanischer Artikel
https://zenn.dev/tsubasa_tech/articles/4dd80c91508ec4
Das obige ist der detaillierte Inhalt vonIch habe mit Streamlit in Snowflake (SiS) eine App zur Überprüfung der Tokenanzahl erstellt.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
