Polars vs. Pandas Eine neue Ära der Datenrahmen in Python?

Mary-Kate Olsen
Freigeben: 2024-09-26 07:18:22
Original
252 Leute haben es durchsucht

Polars vs. Pandas A New Era of Dataframes in Python ?

Polare vs. Pandas: Was ist der Unterschied?

Wenn Sie über die neuesten Python-Entwicklungen auf dem Laufenden sind, haben Sie wahrscheinlich schon von Polars gehört, einer neuen Bibliothek für die Arbeit mit Daten. Während pandas seit langem die Bibliothek der Wahl ist, sorgt Polars für Aufsehen, insbesondere bei der Verarbeitung großer Datenmengen. Was ist also das große Problem mit Polars? Wie unterscheidet es sich von Pandas? Lass es uns aufschlüsseln.


Was sind Polaren?

Polars ist eine kostenlose Open-Source-Bibliothek, die auf Rust (einer schnellen, modernen Programmiersprache) basiert. Es soll Python-Entwicklern helfen, Daten schneller und effizienter zu verarbeiten. Betrachten Sie es als eine Alternative zu Pandas, die glänzt, wenn Sie mit wirklich großen Datensätzen arbeiten, mit denen Pandas möglicherweise Probleme haben.


Warum wurden Polars geschaffen?

Pandas gibt es schon seit Jahren und viele Menschen nutzen es immer noch gerne. Da die Daten jedoch immer größer und komplexer wurden, zeigten Pandas einige Schwächen. Ritchie Vink, der Erfinder von Polars, bemerkte diese Probleme und beschloss, etwas schnelleres und effizienteres zu entwickeln. Sogar Wes McKinney, der Erfinder der Pandas, gab in einem Blogbeitrag mit dem Titel „10 Dinge, die ich an Pandas hasse“ zu, dass Pandas einige Verbesserungen gebrauchen könnten, insbesondere bei großen Datensätzen.

Hier kommt Polars ins Spiel: Es ist blitzschnell und speichereffizient – ​​zwei Dinge, mit denen Pandas beim Umgang mit großen Datenmengen zu kämpfen haben.


Hauptunterschiede: Polars vs. Pandas

1. Geschwindigkeit

Polars ist sehr schnell. Tatsächlich zeigen einige Benchmarks, dass Polars bis zu 5–10 Mal schneller als Pandas sein können, wenn sie häufige Vorgänge wie das Filtern oder Gruppieren von Daten ausführen. Dieser Geschwindigkeitsunterschied macht sich besonders bemerkbar, wenn Sie mit großen Datenmengen arbeiten.

2. Speichernutzung

Polars ist viel effizienter, wenn es um das Gedächtnis geht. Es verbraucht etwa 5 bis 10 Mal weniger Speicher als Pandas, was bedeutet, dass Sie mit viel größeren Datensätzen arbeiten können, ohne auf Speicherprobleme zu stoßen.

3. Lazy Execution

Polars verwendet etwas namens Lazy Execution, was bedeutet, dass nicht jede Operation sofort ausgeführt wird, während Sie sie schreiben. Stattdessen wartet es, bis Sie eine Reihe von Operationen geschrieben haben, und führt sie dann alle auf einmal aus. Dies hilft dabei, Dinge zu optimieren und schneller auszuführen. Pandas hingegen führt jeden Vorgang sofort aus, was bei großen Aufgaben langsamer sein kann.

4. Multithreading

Polars kann mehrere CPU-Kerne gleichzeitig zur Datenverarbeitung nutzen, was die Verarbeitung großer Datensätze noch schneller macht. Pandas ist größtenteils Single-Threaded, was bedeutet, dass es jeweils nur einen CPU-Kern verwenden kann, was die Geschwindigkeit verlangsamt, insbesondere bei großen Datenmengen.


Warum ist Polars so schnell?

Polars ist aus mehreren Gründen schnell:

  • Es ist in Rust integriert, einer Programmiersprache, die für ihre Geschwindigkeit und Sicherheit bekannt ist, was sie äußerst effizient macht.
  • Es verwendet Apache Arrow, eine spezielle Methode zum Speichern von Daten im Speicher, die die Arbeit mit verschiedenen Programmiersprachen einfacher und schneller macht.

Diese Kombination aus Rust und Apache Arrow verschafft Polars einen Vorsprung gegenüber Pandas, wenn es um Geschwindigkeit und Speichernutzung geht.


Stärken und Grenzen von Pandas

Während sich Polars hervorragend für Big Data eignet, hat Pandas immer noch seinen Platz. Pandas funktioniert wirklich gut mit kleinen bis mittelgroßen Datensätzen und gibt es schon so lange, dass es jede Menge Funktionen und eine riesige Community hat. Wenn Sie also nicht mit großen Datensätzen arbeiten, sind Pandas möglicherweise immer noch die beste Option.

Je größer Ihre Datensätze werden, desto mehr Speicher verbrauchen Pandas und werden langsamer, was Polars in solchen Situationen zu einer besseren Wahl macht.


Wann sollten Sie Polaren verwenden?

Sie sollten die Verwendung von Polaren in Betracht ziehen, wenn:

  • Sie arbeiten mit großen Datensätzen (Millionen oder Milliarden Zeilen).
  • Sie benötigen Schnelligkeit und Leistung, um Ihre Aufgaben schnell zu erledigen.
  • Sie haben Speicherbeschränkungen und müssen bei der RAM-Nutzung sparen.

Abschluss

Sowohl Eisbären als auch Pandas haben ihre Stärken. Wenn Sie mit kleinen bis mittleren Datensätzen arbeiten, ist Pandas immer noch ein großartiges Werkzeug. Wenn Sie jedoch mit großen Datensätzen arbeiten und etwas schnelleres und speichereffizienteres benötigen, ist Polars auf jeden Fall einen Versuch wert. Seine Leistungssteigerungen dank Rust und Apache Arrow machen es zu einer fantastischen Option für datenintensive Aufgaben.

Da sich Python weiterentwickelt, könnte Polars zum neuen Goto-Tool für den Umgang mit Big Data werden.

Viel Spaß beim Codieren? ?

Das obige ist der detaillierte Inhalt vonPolars vs. Pandas Eine neue Ära der Datenrahmen in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Neueste Artikel des Autors
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage