Heim Backend-Entwicklung Python-Tutorial Free Threaded-Modus in PythonGIL deaktiviert)

Free Threaded-Modus in PythonGIL deaktiviert)

Oct 11, 2024 am 10:17 AM

Python 3.13 wurde erst kürzlich veröffentlicht, mit einer erstaunlichen neuen Funktion namens „Free Threaded Mode“. Dies ist eine große Verbesserung für die Leistung Ihres Codes, wenn Sie Threads verwenden. Dieser Artikel zeigt, wie Sie diese Funktion aktivieren (standardmäßig nicht aktiviert) und zeigt, wie sich der „freie Thread-Modus“ auf die Leistung Ihres Codes auswirkt.

Installieren Sie Free Threaded Python

Windows- und MacOS-Benutzer

Für Windows- und MacOS-Benutzer laden Sie einfach das neueste Installationsprogramm von der Python-Website herunter. Wenn Sie Python installieren, gibt es ein Kontrollkästchen zum Aktivieren des „Freien Thread-Modus“, wenn Sie die Option „Installation anpassen“ auswählen.

Free Threaded Mode in PythonGIL disabled)

Ubuntu-Benutzer

Für Ubuntu-Benutzer können Sie diese Funktion aktivieren, indem Sie den folgenden Befehl in Ihrem Terminal ausführen:

sudo add-apt-repository ppa:deadsnakes
sudo apt-get update
sudo apt-get install python3.13-nogil
Nach dem Login kopieren

Stellen Sie sicher, dass der Free Threaded-Modus aktiviert ist

Nach der Installation des Pakets können Sie Ihren Code mit python3.13 (Original) und python3.13-nogil oder python3.13t (freies Thread-Python) ausführen.

Weitere Informationen zur Installation von Python 3.13 Experimental auf Linux-Distributionen finden Sie in diesem Artikel.

Um zu überprüfen, ob Ihr Python den „Freien Thread-Modus“ aktiviert hat, können Sie den folgenden Befehl verwenden:

python3.13t -VV
Python 3.13.0 experimental free-threading build (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Nach dem Login kopieren

Kostenlose Leistung im Thread-Modus

Versuchsaufbau

Sehen wir uns die Auswirkung des Free-Threaded-Modus auf einen einfachen Code unten an:

  • Ich habe einen Funktionsarbeiter, der einige Berechnungen durchführt und die Summe der Zahlen von 0 bis 10 Millionen zurückgibt.
  • Ich habe den „Test 1“, um die Worker-Funktion fünfmal nacheinander auszuführen.
  • Ich habe den „Test 2“, um die Worker-Funktion parallel mit mehreren Threads auszuführen, wobei die Anzahl der Threads 5 beträgt.
  • Ich messe die Ausführungszeit beider Tests.
import sys
import threading
import time

print("Python version : ", sys.version)

def worker():
    sum = 0
    for i in range(10000000):
        sum += i


n_worker = 5
# Single thread

start = time.perf_counter()
for i in range(n_worker):
    worker()
print("Single Thread: ", time.perf_counter() - start, "seconds")


# Multi thread
start = time.perf_counter()
threads = []
for i in range(n_worker):
    t = threading.Thread(target=worker)

    threads.append(t)
    t.start()

for t in threads:
    t.join()
print("Multi Thread: ", time.perf_counter() - start, "seconds")

Nach dem Login kopieren

Später werde ich diesen Code mit normalem Python (Binärdatei python3.13) und Python mit freiem Thread (Binärdatei pypy3.13t) ausführen.

Ergebnisse

Führen Sie zunächst den Test mit Python3.13 aus:

python3.13 gil_test.py 
Python version :  3.13.0 (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Single Thread:  1.4370562601834536 seconds
Multi Thread:  1.3681392602156848 seconds
Nach dem Login kopieren

Führen Sie dann den Test mit pypy3.13t aus:

python3.13t gil_test.py 
Python version :  3.13.0 experimental free-threading build (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Single Thread:  1.862126287072897 seconds
Multi Thread:  0.3931183419190347 seconds
Nach dem Login kopieren

Ich versuche es auch mit Python3.11:

python3.11 gil_test.py 
Python version :  3.11.3 (main, Apr 25 2023, 16:40:23) [GCC 11.3.0]
Single Thread:  1.753435204969719 seconds
Multi Thread:  1.457715731114149 seconds
Nach dem Login kopieren

Ergebnisanalyse

Python verfügt standardmäßig über einen GIL-Sperrmechanismus (Global Interpreter Lock), wodurch Multithreading tatsächlich nicht parallel erfolgt. Sie können sehen, dass die Zeitverarbeitung eines einzelnen Threads der eines Multithreads ähnelt.

Mit Python3.11t (Free-Threaded-Modus) ist die Multithread-Leistung viel schneller als die Single-Threaded-Leistung. Also Multithreading jetzt tatsächlich parallel.

Aber sehen Sie, dass der Single-Thread-Test in Python3.13t etwas langsamer ist als in Pypy3.13?

Ich verstehe nicht wirklich warum, also lassen Sie es mich wissen, wenn Sie eine Erklärung haben.

Abschluss

Ich denke, es ist gut, Multithreading in Python für die Parallelverarbeitung zu verwenden. Ohne den GIL-Sperrmechanismus muss der Entwickler jedoch auf die „Thread-Sicherheit“ achten, d. h. Daten zwischen Threads teilen.

Außerdem müssen wir auf die Aktualisierung der Bibliotheken und Pakete warten, um den kostenlosen Thread-Modus vollständig zu unterstützen. Dies ist einer der Gründe, warum dieser „Free-Threaded-Modus“ derzeit nicht standardmäßig aktiviert ist. Aber ich denke, dass es in Zukunft eine gute Funktion sein wird.

Das obige ist der detaillierte Inhalt vonFree Threaded-Modus in PythonGIL deaktiviert). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1670
14
PHP-Tutorial
1276
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles