Heim Backend-Entwicklung Python-Tutorial Umgang mit Ausreißern in Python – IQR-Methode

Umgang mit Ausreißern in Python – IQR-Methode

Oct 11, 2024 am 10:45 AM

Einführung

Bevor Sie Erkenntnisse aus realen Daten gewinnen, ist es wichtig, Ihre Daten zu prüfen, um sicherzustellen, dass die Daten konsistent und fehlerfrei sind. Allerdings können die Daten Fehler enthalten und einige Werte scheinen von anderen Werten abzuweichen. Diese Werte werden als Ausreißer bezeichnet. Ausreißer wirken sich negativ auf die Datenanalyse aus und führen zu falschen Erkenntnissen, die zu einer schlechten Entscheidungsfindung der Beteiligten führen. Daher ist der Umgang mit Ausreißern ein entscheidender Schritt in der Datenvorverarbeitungsphase in der Datenwissenschaft. In diesem Artikel werden wir verschiedene Möglichkeiten bewerten, wie wir mit Ausreißern umgehen können.

Ausreißer

Ausreißer sind Datenpunkte, die sich erheblich von der Mehrheit der Datenpunkte in einem Datensatz unterscheiden. Dabei handelt es sich um Werte, die außerhalb des erwarteten oder üblichen Wertebereichs für eine bestimmte Variable liegen. Ausreißer treten aus verschiedenen Gründen auf, z. B. Fehler bei der Dateneingabe oder Stichprobenfehler. Beim maschinellen Lernen können Ausreißer dazu führen, dass Ihre Modelle falsche Vorhersagen treffen und somit ungenaue Vorhersagen verursachen.

Ausreißer in einem Datensatz mithilfe des Jupyter-Notebooks erkennen

  • Python-Bibliotheken importieren
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
Nach dem Login kopieren
  • Laden Sie Ihre CSV-Datei mit Pandas
df_house_price = pd.read_csv(r'C:\Users\Admin\Desktop\csv files\housePrice.csv')
Nach dem Login kopieren
  • Überprüfen Sie die ersten fünf Zeilen des Immobilienpreisdatensatzes, um einen Einblick in Ihren Datenbestand zu erhalten
df_house_price.head()
Nach dem Login kopieren

Handling Outliers in Python - IQR Method

  • Überprüfen Sie die Preisspalte mithilfe eines Boxplots auf Ausreißer
sns.boxplot(df_house_price['Price'])
plt.title('Box plot showing outliers in prices')
plt.show()
Nach dem Login kopieren

Handling Outliers in Python - IQR Method

  • Aus der Boxplot-Visualisierung weist die Preisspalte Ausreißerwerte auf
  • Jetzt müssen wir Möglichkeiten finden, mit diesen Ausreißern umzugehen, um eine bessere Entscheidungsfindung zu gewährleisten und sicherzustellen, dass Modelle für maschinelles Lernen die richtige Vorhersage treffen

IQR Methode zur Behandlung von Ausreißerwerten

  • IQR-Methode bedeutet, dass der Interquartilbereich die Streuung der mittleren Hälfte Ihrer Daten misst. Dies ist der Bereich für die mittleren 50 % Ihrer Stichprobe.

Schritte zum Entfernen von Ausreißern mithilfe des Interquartilbereichs

  • Berechnen Sie das erste Quartil (Q1), das 25 % der Daten ausmacht, und das dritte Quartil (Q3), das 75 % der Daten ausmacht.
Q1 = df_house_price['Price'].quantile(0.25)
Q3 = df_house_price['Price'].quantile(0.75)
Nach dem Login kopieren
  • Berechnen Sie den Interquartilbereich
IQR = Q3 - Q1
Nach dem Login kopieren
  • Bestimmen Sie die Ausreißergrenzen.
lower_bound = Q1 - 1.5 * IQR
Nach dem Login kopieren

Handling Outliers in Python - IQR Method

  • Untergrenze bedeutet, dass jeder Wert unter -5454375000,0 ein Ausreißer ist
upper_bound = Q3 + 1.5 * IQR
Nach dem Login kopieren

Handling Outliers in Python - IQR Method

  • Obergrenze bedeutet, dass jeder Wert über 12872625000,0 ein Ausreißer ist

  • Ausreißerwerte in der Preisspalte entfernen

filt = (df_house_price['Price'] >= lower_bound) & (df_house_price['Price'] <= upper_bound)

df = df_house_price[filt]
df.head()
Nach dem Login kopieren

Handling Outliers in Python - IQR Method

  • Boxplot Nach dem Entfernen von Ausreißern
sns.boxplot(df['Price'])
plt.title('Box plot after removing outliers')
plt.show()
Nach dem Login kopieren

Handling Outliers in Python - IQR Method

Verschiedene Methoden zum Umgang mit Ausreißerwerten

  • Z-Score-Methode
  • Perzentilkappung (Winsorisierung)
  • Trimmen (Trunkierung)
  • Zurechnung
  • Clustering-basierte Methoden, z. B. DBSCAN

Abschluss

Die IQR-Methode ist einfach und robust gegenüber Ausreißern und hängt nicht von der Normalitätsannahme ab. Der Nachteil besteht darin, dass es nur univariate Daten verarbeiten kann und gültige Datenpunkte entfernen kann, wenn die Daten verzerrt sind oder starke Enden aufweisen.

Danke
Folgen Sie mir auf LinkedIn und auf Github für mehr.

Das obige ist der detaillierte Inhalt vonUmgang mit Ausreißern in Python – IQR-Methode. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1672
14
PHP-Tutorial
1276
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles