Wie zählt man mit Pandas eindeutige Werte in Gruppen?
Eindeutige Werte in Gruppen mit Pandas zählen
Bei der Arbeit mit Datensätzen, die mehrere in Kategorien gruppierte Variablen enthalten, ist es oft notwendig, die Anzahl zu bestimmen einzigartiger Werte, die jeder Gruppe zugeordnet sind. Pandas, eine weit verbreitete Python-Bibliothek zur Datenbearbeitung, bietet mehrere Methoden zum Zählen eindeutiger Werte innerhalb von Gruppen.
Eine häufige Anforderung besteht darin, die Anzahl eindeutiger Bezeichner innerhalb jeder Domäne zu zählen. Anhand eines Datenrahmens mit Spalten für ID und Domäne möchten wir ein Ergebnis erhalten, das die Anzahl der eindeutigen IDs für jede Domäne anzeigt.
Insbesondere unter Berücksichtigung der Daten:
ID domain 0 123 vk.com 1 123 vk.com 2 123 twitter.com 3 456 vk.com 4 456 facebook.com 5 456 vk.com 6 456 google.com 7 789 twitter.com 8 789 vk.com
Wir Ziel ist es, die folgende Ausgabe zu erzielen:
domain count vk.com 3 twitter.com 2 facebook.com 1 google.com 1
Um dies zu erreichen, können wir die Funktion nunique() innerhalb der Pandas-Groupby-Operation verwenden. Indem wir den Datenrahmen nach der Domänenspalte gruppieren und anschließend die Funktion nunique() auf die ID-Spalte anwenden, erhalten wir die Anzahl der eindeutigen Werte für jede Domäne. Der resultierende Datenrahmen enthält das gewünschte Ergebnis:
df = df.groupby(['domain', 'ID']).nunique() print(df)
In bestimmten Szenarien können die Daten jedoch Zeichen wie einfache Anführungszeichen innerhalb der Domänennamen enthalten. Um solche Fälle zu behandeln, können wir die Funktion str.strip("'") verwenden, um die einfachen Anführungszeichen vor dem Gruppieren und Zählen zu entfernen. Dies kann wie folgt implementiert werden:
df = df.ID.groupby([df.domain.str.strip("'")]).nunique() print(df)
Alternativ können wir den Code vereinfachen, indem wir die Funktion str.strip("'") innerhalb der Groupby-Operation verketten:
df.groupby(df.domain.str.strip("'"))['ID'].nunique()
Zur Beibehaltung Für die Domänenspalte im resultierenden Datenrahmen können wir die Funktion agg() mit dem Parameter as_index=False verwenden:
df = df.groupby(by='domain', as_index=False).agg({'ID': pd.Series.nunique}) print(df)
Diese Methode gibt einen Datenrahmen mit sowohl der Domänen- als auch der Anzahlspalte zurück, wobei count stellt die Anzahl der eindeutigen IDs dar, die jeder Domäne zugeordnet sind.
Das obige ist der detaillierte Inhalt vonWie zählt man mit Pandas eindeutige Werte in Gruppen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
