Heim Backend-Entwicklung Python-Tutorial So implementieren Sie die Erkennung maschinenlesbarer Zonen (MRZ) in Python

So implementieren Sie die Erkennung maschinenlesbarer Zonen (MRZ) in Python

Oct 18, 2024 pm 04:17 PM

Maschinenlesbare Zone (MRZ) ist eine entscheidende Funktion, die in modernen Pässen, Visa und Personalausweisen zum Einsatz kommt. Es enthält wesentliche Informationen über den Dokumenteninhaber, wie z. B. seinen Namen, sein Geschlecht, seinen Ländercode und seine Dokumentennummer. Die MRZ-Erkennung spielt eine Schlüsselrolle bei der Grenzkontrolle, der Flughafensicherheit und den Check-in-Prozessen in Hotels. In diesem Tutorial zeigen wir, wie Sie das Dynamsoft Capture Vision SDK nutzen, um die MRZ-Erkennung unter Windows, Linux und macOS zu implementieren Plattformen. Dieser Leitfaden bietet einen schrittweisen Ansatz zur Nutzung der leistungsstarken Funktionen des SDK, um die plattformübergreifende MRZ-Erkennung nahtlos und effizient zu gestalten.

Python MRZ-Erkennungsdemo auf macOS

Voraussetzungen

  • Dynamsoft Capture Vision-Testlizenz: Erhalten Sie einen 30-Tage-Testlizenzschlüssel für das Dynamsoft Capture Vision SDK.

  • Python-Pakete: Installieren Sie die erforderlichen Python-Pakete mit den folgenden Befehlen:

    pip install dynamsoft-capture-vision-bundle opencv-python
    
    Nach dem Login kopieren

    Wozu dienen diese Pakete?

    • dynamsoft-capture-vision-bundle ist das Dynamsoft Capture Vision SDK für Python.
    • opencv-python erfasst Kamerabilder und zeigt verarbeitete Bildergebnisse an.

Erste Schritte mit dem Dynamsoft Python Capture Vision-Beispiel

Das offizielle MRZ-Scanner-Beispiel zeigt, wie man mit dem Dynamsoft Capture Vision SDK in kurzer Zeit einen einfachen Python-basierten MRZ-Reader erstellt.

Werfen wir einen Blick auf den Quellcode und analysieren seine Funktionalität:

import sys
from dynamsoft_capture_vision_bundle import *
import os

class MRZResult:
    def __init__(self, item: ParsedResultItem):
        self.doc_type = item.get_code_type()
        self.raw_text=[]
        self.doc_id = None
        self.surname = None
        self.given_name = None
        self.nationality = None
        self.issuer = None
        self.gender = None
        self.date_of_birth = None
        self.date_of_expiry = None
        if self.doc_type == "MRTD_TD3_PASSPORT":
            if item.get_field_value("passportNumber") != None and item.get_field_validation_status("passportNumber") != EnumValidationStatus.VS_FAILED:
                self.doc_id = item.get_field_value("passportNumber")
            elif item.get_field_value("documentNumber") != None and item.get_field_validation_status("documentNumber") != EnumValidationStatus.VS_FAILED:
                self.doc_id = item.get_field_value("documentNumber")

        line = item.get_field_value("line1")
        if line is not None:
            if item.get_field_validation_status("line1") == EnumValidationStatus.VS_FAILED:
                line += ", Validation Failed"
            self.raw_text.append(line)
        line = item.get_field_value("line2")
        if line is not None:
            if item.get_field_validation_status("line2") == EnumValidationStatus.VS_FAILED:
                line += ", Validation Failed"
            self.raw_text.append(line)
        line = item.get_field_value("line3")
        if line is not None:
            if item.get_field_validation_status("line3") == EnumValidationStatus.VS_FAILED:
                line += ", Validation Failed"
            self.raw_text.append(line)

        if item.get_field_value("nationality") != None and item.get_field_validation_status("nationality") != EnumValidationStatus.VS_FAILED:
            self.nationality = item.get_field_value("nationality")
        if item.get_field_value("issuingState") != None and item.get_field_validation_status("issuingState") != EnumValidationStatus.VS_FAILED:
            self.issuer = item.get_field_value("issuingState")
        if item.get_field_value("dateOfBirth") != None and item.get_field_validation_status("dateOfBirth") != EnumValidationStatus.VS_FAILED:
            self.date_of_birth = item.get_field_value("dateOfBirth")
        if item.get_field_value("dateOfExpiry") != None and item.get_field_validation_status("dateOfExpiry") != EnumValidationStatus.VS_FAILED:
            self.date_of_expiry = item.get_field_value("dateOfExpiry")
        if item.get_field_value("sex") != None and item.get_field_validation_status("sex") != EnumValidationStatus.VS_FAILED:
            self.gender = item.get_field_value("sex")
        if item.get_field_value("primaryIdentifier") != None and item.get_field_validation_status("primaryIdentifier") != EnumValidationStatus.VS_FAILED:
            self.surname = item.get_field_value("primaryIdentifier")
        if item.get_field_value("secondaryIdentifier") != None and item.get_field_validation_status("secondaryIdentifier") != EnumValidationStatus.VS_FAILED:
            self.given_name = item.get_field_value("secondaryIdentifier")
    def to_string(self):
        msg = (f"Raw Text:\n")
        for index, line in enumerate(self.raw_text):
            msg += (f"\tLine {index + 1}: {line}\n")
        msg+=(f"Parsed Information:\n"
            f"\tDocumentType: {self.doc_type or ''}\n"
            f"\tDocumentID: {self.doc_id or ''}\n"
            f"\tSurname: {self.surname or ''}\n"
            f"\tGivenName: {self.given_name or ''}\n"
            f"\tNationality: {self.nationality or ''}\n"
            f"\tIssuingCountryorOrganization: {self.issuer or ''}\n"
            f"\tGender: {self.gender or ''}\n"
            f"\tDateofBirth(YYMMDD): {self.date_of_birth or ''}\n"
            f"\tExpirationDate(YYMMDD): {self.date_of_expiry or ''}\n")
        return msg
def print_results(result: ParsedResult) -> None:
    tag = result.get_original_image_tag()
    if isinstance(tag, FileImageTag):
        print("File:", tag.get_file_path())
    if result.get_error_code() != EnumErrorCode.EC_OK:
        print("Error:", result.get_error_string())        
    else:
        items = result.get_items()
        print("Parsed", len(items), "MRZ Zones.")
        for item in items:
            mrz_result = MRZResult(item)
            print(mrz_result.to_string())

if __name__ == '__main__':

    print("**********************************************************")
    print("Welcome to Dynamsoft Capture Vision - MRZ Sample")
    print("**********************************************************")

    error_code, error_message = LicenseManager.init_license("LICENSE-KEY")
    if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED:
        print("License initialization failed: ErrorCode:", error_code, ", ErrorString:", error_message)
    else:
        cvr_instance = CaptureVisionRouter()
        while (True):
            image_path = input(
                ">> Input your image full path:\n"
                ">> 'Enter' for sample image or 'Q'/'q' to quit\n"
            ).strip('\'"')

            if image_path.lower() == "q":
                sys.exit(0)

            if image_path == "":
                image_path = "../Images/passport-sample.jpg"

            if not os.path.exists(image_path):
                print("The image path does not exist.")
                continue
            result = cvr_instance.capture(image_path, "ReadPassportAndId")
            if result.get_error_code() != EnumErrorCode.EC_OK:
                print("Error:", result.get_error_code(), result.get_error_string())
            else:
                parsed_result = result.get_parsed_result()
                if parsed_result is None or len(parsed_result.get_items()) == 0:
                    print("No parsed results.")
                else:
                    print_results(parsed_result)
    input("Press Enter to quit...")
Nach dem Login kopieren

Erklärung

  • Die Methode LicenseManager.init_license initialisiert das Dynamsoft Capture Vision SDK mit einem gültigen Lizenzschlüssel.
  • Die CaptureVisionRouter-Klasse verwaltet Bildverarbeitungsaufgaben und koordiniert verschiedene Bildverarbeitungsmodule. Seine Capture-Methode verarbeitet das Eingabebild und gibt das Ergebnis zurück.
  • Die ReadPassportAndId ist eine integrierte Vorlage, die den Verarbeitungsmodus angibt. Das SDK unterstützt verschiedene Verarbeitungsmodi, wie z. B. MRZ-Erkennung, Dokumentkantenerkennung und Barcode-Erkennung.
  • Die Methode get_parsed_result ruft das MRZ-Erkennungsergebnis als Wörterbuch ab. Die MRZResult-Klasse extrahiert und verpackt die relevanten MRZ-Informationen. Da diese Klasse in verschiedenen Anwendungen wiederverwendet werden kann, wird empfohlen, sie in eine utils.py-Datei zu verschieben.

Im nächsten Abschnitt verwenden wir OpenCV, um die MRZ-Erkennungsergebnisse zu visualisieren und die erkannten MRZ-Zonen auf dem Passbild anzuzeigen.

Visualizing Machine Readable Zone Location in a Passport Image

In the code above, result is an instance of the CapturedResult class. Calling its get_recognized_text_lines_result() method retrieves a list of TextLineResultItem objects. Each TextLineResultItem object contains the coordinates of the detected text line. Use the following code snippet to extract the coordinates and draw contours on the passport image:

cv_image = cv2.imread(image_path)
line_result = result.get_recognized_text_lines_result()

items = line_result.get_items()
for item in items:
    location = item.get_location()
    x1 = location.points[0].x
    y1 = location.points[0].y
    x2 = location.points[1].x
    y2 = location.points[1].y
    x3 = location.points[2].x
    y3 = location.points[2].y
    x4 = location.points[3].x
    y4 = location.points[3].y
    del location

    cv2.drawContours(
        cv_image, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2)

cv2.imshow(
    "Original Image with Detected MRZ Zone", cv_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Nach dem Login kopieren

How to Implement Machine Readable Zone (MRZ) Recognition in Python

Scanning and Recognizing MRZ in Real-time via Webcam

Scanning and recognizing MRZ in real-time via webcam requires capturing a continuous image stream. We can use the OpenCV library to capture frames from the webcam and process them with the Dynamsoft Capture Vision SDK. The following code snippet demonstrates how to implement real-time MRZ recognition using a webcam:

from dynamsoft_capture_vision_bundle import *
import cv2
import numpy as np
import queue
from utils import *


class FrameFetcher(ImageSourceAdapter):
    def has_next_image_to_fetch(self) -> bool:
        return True

    def add_frame(self, imageData):
        self.add_image_to_buffer(imageData)


class MyCapturedResultReceiver(CapturedResultReceiver):
    def __init__(self, result_queue):
        super().__init__()
        self.result_queue = result_queue

    def on_captured_result_received(self, captured_result):
        self.result_queue.put(captured_result)


if __name__ == '__main__':
    errorCode, errorMsg = LicenseManager.init_license(
        "LICENSE-KEY")
    if errorCode != EnumErrorCode.EC_OK and errorCode != EnumErrorCode.EC_LICENSE_CACHE_USED:
        print("License initialization failed: ErrorCode:",
              errorCode, ", ErrorString:", errorMsg)
    else:
        vc = cv2.VideoCapture(0)
        if not vc.isOpened():
            print("Error: Camera is not opened!")
            exit(1)

        cvr = CaptureVisionRouter()
        fetcher = FrameFetcher()
        cvr.set_input(fetcher)

        # Create a thread-safe queue to store captured items
        result_queue = queue.Queue()

        receiver = MyCapturedResultReceiver(result_queue)
        cvr.add_result_receiver(receiver)

        errorCode, errorMsg = cvr.start_capturing("ReadPassportAndId")

        if errorCode != EnumErrorCode.EC_OK:
            print("error:", errorMsg)

        while True:
            ret, frame = vc.read()
            if not ret:
                print("Error: Cannot read frame!")
                break

            fetcher.add_frame(convertMat2ImageData(frame))

            if not result_queue.empty():
                captured_result = result_queue.get_nowait()

                items = captured_result.get_items()
                for item in items:

                    if item.get_type() == EnumCapturedResultItemType.CRIT_TEXT_LINE:
                        text = item.get_text()
                        line_results = text.split('\n')
                        location = item.get_location()
                        x1 = location.points[0].x
                        y1 = location.points[0].y
                        x2 = location.points[1].x
                        y2 = location.points[1].y
                        x3 = location.points[2].x
                        y3 = location.points[2].y
                        x4 = location.points[3].x
                        y4 = location.points[3].y
                        cv2.drawContours(
                            frame, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2)

                        delta = y3 - y1
                        for line_result in line_results:
                            cv2.putText(
                                frame, line_result, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
                            y1 += delta

                        del location

                    elif item.get_type() == EnumCapturedResultItemType.CRIT_PARSED_RESULT:
                        mrz_result = MRZResult(item)
                        print(mrz_result.to_string())

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

            cv2.imshow('frame', frame)

        cvr.stop_capturing()
        vc.release()
        cv2.destroyAllWindows()

Nach dem Login kopieren

Explanation

  • The FrameFetcher class implements the ImageSourceAdapter interface to feed frame data into the built-in buffer.
  • The MyCapturedResultReceiver class implements the CapturedResultReceiver interface. The on_captured_result_received method runs on a native C++ worker thread, sending CapturedResult objects to the main thread where they are stored in a thread-safe queue for further use.
  • A CapturedResult contains several CapturedResultItem objects. The CRIT_TEXT_LINE type represents recognized text lines, while the CRIT_PARSED_RESULT type represents parsed MRZ data.

Running the Real-time MRZ Recognition Demo on Windows

How to Implement Machine Readable Zone (MRZ) Recognition in Python

Source Code

https://github.com/yushulx/python-mrz-scanner-sdk/tree/main/examples/official

Das obige ist der detaillierte Inhalt vonSo implementieren Sie die Erkennung maschinenlesbarer Zonen (MRZ) in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1670
14
PHP-Tutorial
1276
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles