Heim Backend-Entwicklung Python-Tutorial Wie können Sie DataFrame-Spalten normalisieren, um Datenkonsistenz zu erreichen?

Wie können Sie DataFrame-Spalten normalisieren, um Datenkonsistenz zu erreichen?

Oct 18, 2024 pm 04:57 PM

How Can You Normalize DataFrame Columns to Achieve Data Consistency?

Datenrahmenspalten für Konsistenz normalisieren

Bei der Datenanalyse ist es häufig erforderlich, Spalten eines Datenrahmens zu normalisieren, um die Konsistenz der Datenbereiche sicherzustellen. Dies ist besonders wichtig, wenn Sie mit Daten aus verschiedenen Quellen arbeiten oder wenn Werte auf unterschiedlichen Skalen liegen.

Problemstellung

Betrachten Sie einen Datenrahmen mit Spalten, die unterschiedliche Wertebereiche haben:

df:
    A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09
Nach dem Login kopieren

Das Ziel besteht darin, die Spalten dieses Datenrahmens so zu normalisieren, dass jeder Wert zwischen 0 und 1 liegt.

Lösung

Mittelwertnormalisierung

Mit Pandas kann die Mittelwertnormalisierung wie folgt implementiert werden:

normalized_df = (df - df.mean()) / df.std()
Nach dem Login kopieren

Diese Methode subtrahiert den Mittelwert jeder Spalte von den Originalwerten und dividiert sie dann durch Standardabweichung.

Min-Max-Normalisierung

Für Min-Max-Normalisierung:

normalized_df = (df - df.min()) / (df.max() - df.min())
Nach dem Login kopieren

Dieser Ansatz berechnet jeweils die Minimal- und Maximalwerte Spalte und verwendet sie, um die ursprünglichen Werte auf den Bereich [0, 1] zu skalieren.

Ergebnis

Beide Normalisierungsmethoden erzeugen einen Datenrahmen mit Spalten, in denen sich jeder Wert befindet zwischen 0 und 1. Für den angegebenen Beispieldatenrahmen ist die erwartete Ausgabe:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWie können Sie DataFrame-Spalten normalisieren, um Datenkonsistenz zu erreichen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße Artikel -Tags

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Mar 10, 2025 pm 06:54 PM

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

So herunterladen Sie Dateien in Python So herunterladen Sie Dateien in Python Mar 01, 2025 am 10:03 AM

So herunterladen Sie Dateien in Python

Bildfilterung in Python Bildfilterung in Python Mar 03, 2025 am 09:44 AM

Bildfilterung in Python

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden Mar 05, 2025 am 09:58 AM

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

Wie man mit PDF -Dokumenten mit Python arbeitet Wie man mit PDF -Dokumenten mit Python arbeitet Mar 02, 2025 am 09:54 AM

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Mar 02, 2025 am 10:10 AM

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Mar 10, 2025 pm 06:52 PM

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?

Einführung des natürlichen Sprach -Toolkits (NLTK) Einführung des natürlichen Sprach -Toolkits (NLTK) Mar 01, 2025 am 10:05 AM

Einführung des natürlichen Sprach -Toolkits (NLTK)

See all articles