Inhaltsverzeichnis
Optimierung der JSON-Antwortzeiten für große Datensätze in FastAPI
Heim Backend-Entwicklung Python-Tutorial Wie optimiert man JSON-Antwortzeiten für große Datensätze in FastAPI?

Wie optimiert man JSON-Antwortzeiten für große Datensätze in FastAPI?

Oct 18, 2024 pm 11:02 PM

How to Optimize JSON Response Times for Large Datasets in FastAPI?

Optimierung der JSON-Antwortzeiten für große Datensätze in FastAPI

Problem:

Abrufen einer erheblichen Menge an JSON-Daten von einem Der FastAPI-Endpunkt ist merklich langsam und benötigt etwa eine Minute. Die Daten werden zunächst mit json.loads() aus einer Parquet-Datei geladen und vor der Rückgabe gefiltert. Suche nach einem schnelleren Ansatz zur Bereitstellung der Daten.

Lösung:

Die langsame Antwortzeit ist auf mehrere JSON-Konvertierungen innerhalb der Funktion parse_parquet() zurückzuführen. FastAPI kodiert den zurückgegebenen Wert automatisch mit jsonable_encoder, bevor er ihn mit json.dumps() serialisiert, ein zeitaufwändiger Prozess. Externe JSON-Encoder wie orjson oder ujson bieten potenzielle Geschwindigkeitssteigerungen.

Die effizienteste Lösung besteht jedoch darin, unnötige JSON-Konvertierungen zu vermeiden. Der folgende Code verwendet eine benutzerdefinierte APIRoute-Klasse, um direkte JSON-Antworten von Pandas DataFrames zu ermöglichen:

<code class="python">from fastapi import APIRoute

class TimedRoute(APIRoute):
    # Custom handler for capturing response time
    def get_route_handler(self):
        original_route_handler = super().get_route_handler()
        
        async def custom_route_handler(request):
            before = time.time()
            response = await original_route_handler(request)
            duration = time.time() - before
            response.headers["Response-Time"] = str(duration)
            print(f"route duration: {duration}")
            return response

        return custom_route_handler</code>
Nach dem Login kopieren

Mit diesem Code können Sie die Antwortzeiten verschiedener Datenkonvertierungsmethoden vergleichen. Unter Verwendung einer Beispielparkettdatei mit 160.000 Zeilen und 45 Spalten wurden die folgenden Ergebnisse erhalten:

  • Standard-FastAPI-Encoder (json.dumps()):Langsamste
  • orjson: Vergleichbar mit Standard-Encoder
  • ujson: Etwas schneller als orjson
  • PandasJSON (df.to_json()):Am deutlichsten schneller

Um die Benutzererfahrung zu verbessern, sollten Sie den Content-Disposition-Header mit dem Anhangsparameter und einem Dateinamen festlegen, um einen Download zu starten, anstatt die Daten im Browser anzuzeigen. Dieser Ansatz umgeht Browser-Einschränkungen und beschleunigt den Prozess.

Darüber hinaus bietet Dask eine optimierte Handhabung großer Datenmengen und bietet Alternativen zu Pandas. Streaming oder asynchrone Antworten können ebenfalls in Betracht gezogen werden, um Speicherprobleme bei der Verarbeitung großer Datenmengen zu vermeiden.

Das obige ist der detaillierte Inhalt vonWie optimiert man JSON-Antwortzeiten für große Datensätze in FastAPI?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Apr 02, 2025 am 06:27 AM

Laden Sie die Gurkendatei in Python 3.6 Umgebungsfehler: ModulenotFoundError: Nomodulenamed ...

Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Apr 02, 2025 am 06:45 AM

Diskussion über die Gründe, warum Pipeline -Dateien beim Lernen und Verwendung von Scapy -Crawlern für anhaltende Datenspeicher nicht geschrieben werden können, können Sie auf Pipeline -Dateien begegnen ...

See all articles