


Wie implementiert man parametrisierte benutzerdefinierte Verlustfunktionen in Keras?
Benutzerdefinierte Verlustfunktionen in Keras: Eine detaillierte Anleitung
Benutzerdefinierte Verlustfunktionen ermöglichen es Ihnen, den Trainingsprozess Ihres Modells an ein bestimmtes Problem oder eine bestimmte Metrik anzupassen . In Keras erfordert die Implementierung parametrisierter benutzerdefinierter Verlustfunktionen die Befolgung eines bestimmten Verfahrens.
Erstellen der Koeffizienten-/Metrikmethode
Definieren Sie zunächst eine Methode zur Berechnung des von Ihnen verwendeten Koeffizienten oder der Metrik als Verlustfunktion verwenden möchte. Für den Dice-Koeffizienten können Sie beispielsweise den folgenden Code schreiben:
import keras.backend as K def dice_coef(y_true, y_pred, smooth, thresh): y_pred = y_pred > thresh y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
Wrapper-Funktion für Keras
Keras-Verlustfunktionen akzeptieren nur (y_true, y_pred) als Parameter. Um in dieses Format zu passen, erstellen Sie eine Wrapper-Funktion, die die Verlustfunktion zurückgibt:
def dice_loss(smooth, thresh): def dice(y_true, y_pred) return -dice_coef(y_true, y_pred, smooth, thresh) return dice
Verwenden der benutzerdefinierten Verlustfunktion
Jetzt können Sie Ihre benutzerdefinierte Verlustfunktion verwenden in Keras, indem Sie es mit dem Verlustargument kompilieren:
# build model model = my_model() # get the loss function model_dice = dice_loss(smooth=1e-5, thresh=0.5) # compile model model.compile(loss=model_dice)
Das obige ist der detaillierte Inhalt vonWie implementiert man parametrisierte benutzerdefinierte Verlustfunktionen in Keras?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben
