Inhaltsverzeichnis
Farbstreudiagramme nach Spaltenwerten in Python mit Pandas und Matplotlib
Heim Backend-Entwicklung Python-Tutorial Wie färbe ich Streudiagramme nach Spaltenwerten in Python mit Pandas und Matplotlib ein?

Wie färbe ich Streudiagramme nach Spaltenwerten in Python mit Pandas und Matplotlib ein?

Oct 19, 2024 pm 02:52 PM

How to Color Scatter Plots by Column Values in Python with pandas and Matplotlib?

Farbstreudiagramme nach Spaltenwerten in Python mit Pandas und Matplotlib

Einführung

Wie Sie bereits erwähnt haben, bietet ggplot2 praktische Funktionen Anpassung der Ästhetik, sodass Sie Streudiagramme basierend auf Spaltenwerten einfärben können. In diesem Artikel werden äquivalente Funktionalitäten in Python mit Pandas und Matplotlib untersucht.

Lösung mit Seaborn

Seaborn, eine Datenvisualisierungsbibliothek für Python, bietet eine elegante Lösung für dieses Problem.

<code class="python">import seaborn as sns

# Load and clean the data
data = pd.read_csv('data.csv')
data['Gender'] = data['Gender'].astype('category')

# Create the scatter plot with color mapping
sns.relplot(data=data, x='Weight', y='Height', hue='Gender')</code>
Nach dem Login kopieren

Dieser Code nutzt die Relplot-Funktion, um ein Streudiagramm zu erstellen, wobei der Farbtonparameter Farben basierend auf der Spalte „Geschlecht“ zuweist.

Lösung mit Matplotlib und Dictionary

Wenn Sie Matplotlib lieber direkt verwenden möchten, können Sie ein Farbzuordnungswörterbuch erstellen und es zum Färben der Punkte verwenden.

<code class="python">import matplotlib.pyplot as plt
import numpy as np

# Load and clean the data
data = pd.read_csv('data.csv')
data['Gender'] = data['Gender'].astype('category')

# Create a color mapping dictionary
categories = np.unique(data['Gender'])
colors = np.linspace(0, 1, len(categories))
color_dict = dict(zip(categories, colors))

# Add a 'Color' column to the DataFrame
data['Color'] = data['Gender'].map(color_dict)

# Create the scatter plot
plt.scatter(data['Weight'], data['Height'], c=data['Color'])
plt.show()</code>
Nach dem Login kopieren

Bei diesem Ansatz weist das color_dict jeder Kategorie in Farben zu die Spalte „Geschlecht“. Die Spalte „Farbe“ wird dem DataFrame hinzugefügt und der c-Parameter in der Streufunktion verwendet diese Spalte, um die Farbe jedes Punkts zu bestimmen.

Zusätzliche Anpassung

Sowohl Seaborn als auch Matplotlib ermöglichen eine weitere Anpassung des Streudiagramms, z. B. das Anpassen der Farbpalette oder das Hinzufügen einer Legende. Weitere Optionen finden Sie in der Dokumentation.

Fazit

Sie können Streudiagramme nach Spaltenwerten in Python ganz einfach einfärben, indem Sie entweder Seaborn oder Matplotlib direkt verwenden. Seaborn bietet eine praktische High-Level-Schnittstelle, während Matplotlib eine größere Kontrolle über die Anpassung bietet. Durch die Nutzung der oben beschriebenen Techniken können Sie informative und optisch ansprechende Streudiagramme in Python erstellen.

Das obige ist der detaillierte Inhalt vonWie färbe ich Streudiagramme nach Spaltenwerten in Python mit Pandas und Matplotlib ein?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1664
14
PHP-Tutorial
1269
29
C#-Tutorial
1249
24
Python vs. C: Anwendungen und Anwendungsfälle verglichen Python vs. C: Anwendungen und Anwendungsfälle verglichen Apr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

See all articles