


Implementierung der Kantenerkennung mit Python und OpenCV: Eine Schritt-für-Schritt-Anleitung
Einführung
Die Kantenerkennung ist in der Bildverarbeitung von grundlegender Bedeutung und ermöglicht es uns, Objektgrenzen in Bildern zu identifizieren. In diesem Tutorial implementieren wir die Kantenerkennung mithilfe des Sobel-Operators und des Canny-Kantendetektors mit Python und OpenCV. Anschließend erstellen wir mit Flask eine einfache Webanwendung, die mit Bootstrap gestaltet ist, damit Benutzer Bilder hochladen und die Ergebnisse anzeigen können.
DEMO-LINK:Kantenerkennungs-Demo
Voraussetzungen
- Python 3.x ist auf Ihrem Computer installiert.
- Grundkenntnisse der Python-Programmierung.
- Kenntnisse mit HTML und CSS sind hilfreich, aber nicht erforderlich.
Einrichten der Umgebung
1. Installieren Sie die erforderlichen Bibliotheken
Öffnen Sie Ihr Terminal oder Ihre Eingabeaufforderung und führen Sie Folgendes aus:
pip install opencv-python numpy Flask
2. Erstellen Sie das Projektverzeichnis
mkdir edge_detection_app cd edge_detection_app
Implementierung der Kantenerkennung
1. Der Sobel-Operator
Der Sobel-Operator berechnet den Gradienten der Bildintensität und betont Kanten.
Code-Implementierung:
import cv2 # Load the image in grayscale image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE) if image is None: print("Error loading image") exit() # Apply Sobel operator sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5) # Horizontal edges sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5) # Vertical edges
2. Der Canny Edge Detector
Der Canny-Kantendetektor ist ein mehrstufiger Algorithmus zur Kantenerkennung.
Code-Implementierung:
# Apply Canny edge detector edges = cv2.Canny(image, threshold1=100, threshold2=200)
Erstellen einer Flask-Webanwendung
1. Richten Sie die Flask-App ein
Erstellen Sie eine Datei mit dem Namen app.py:
from flask import Flask, request, render_template, redirect, url_for import cv2 import os app = Flask(__name__) UPLOAD_FOLDER = 'static/uploads/' OUTPUT_FOLDER = 'static/outputs/' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['OUTPUT_FOLDER'] = OUTPUT_FOLDER # Create directories if they don't exist os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(OUTPUT_FOLDER, exist_ok=True)
2. Routen definieren
Route hochladen:
@app.route('/', methods=['GET', 'POST']) def upload_image(): if request.method == 'POST': file = request.files.get('file') if not file or file.filename == '': return 'No file selected', 400 filepath = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) file.save(filepath) process_image(file.filename) return redirect(url_for('display_result', filename=file.filename)) return render_template('upload.html')
Prozessbildfunktion:
def process_image(filename): image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) # Apply edge detection sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5) edges = cv2.Canny(image, 100, 200) # Save outputs cv2.imwrite(os.path.join(app.config['OUTPUT_FOLDER'], 'sobelx_' + filename), sobelx) cv2.imwrite(os.path.join(app.config['OUTPUT_FOLDER'], 'edges_' + filename), edges)
Ergebnisroute:
@app.route('/result/<filename>') def display_result(filename): return render_template('result.html', original_image='uploads/' + filename, sobelx_image='outputs/sobelx_' + filename, edges_image='outputs/edges_' + filename)
3. Führen Sie die App aus
if __name__ == '__main__': app.run(debug=True)
Gestalten der Webanwendung mit Bootstrap
Fügen Sie Bootstrap CDN zur Gestaltung in Ihre HTML-Vorlagen ein.
1. upload.html
Erstellen Sie ein Vorlagenverzeichnis und fügen Sie upload.html hinzu:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Edge Detection App</title> <!-- Bootstrap CSS CDN --> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"> </head> <body> <div class="container mt-5"> <h1 class="text-center mb-4">Upload an Image for Edge Detection</h1> <div class="row justify-content-center"> <div class="col-md-6"> <form method="post" enctype="multipart/form-data" class="border p-4"> <div class="form-group"> <label for="file">Choose an image:</label> <input type="file" name="file" accept="image/*" required class="form-control-file" id="file"> </div> <button type="submit" class="btn btn-primary btn-block">Upload and Process</button> </form> </div> </div> </div> </body> </html>
2. result.html
Erstellen Sie result.html im Vorlagenverzeichnis:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Edge Detection Results</title> <!-- Bootstrap CSS CDN --> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"> </head> <body> <div class="container mt-5"> <h1 class="text-center mb-5">Edge Detection Results</h1> <div class="row"> <div class="col-md-6 mb-4"> <h4 class="text-center">Original Image</h4> <img src="{{ url_for('static', filename=original_image) }}" alt="Original Image" class="img-fluid rounded mx-auto d-block"> </div> <div class="col-md-6 mb-4"> <h4 class="text-center">Sobel X</h4> <img src="{{ url_for('static', filename=sobelx_image) }}" alt="Sobel X" class="img-fluid rounded mx-auto d-block"> </div> <div class="col-md-6 mb-4"> <h4 class="text-center">Canny Edges</h4> <img src="{{ url_for('static', filename=edges_image) }}" alt="Canny Edges" class="img-fluid rounded mx-auto d-block"> </div> </div> <div class="text-center mt-4"> <a href="{{ url_for('upload_image') }}" class="btn btn-secondary">Process Another Image</a> </div> </div> </body> </html>
Ausführen und Testen der Anwendung
1. Führen Sie die Flask-App aus
python app.py
2. Greifen Sie auf die Anwendung zu
Öffnen Sie Ihren Webbrowser und navigieren Sie zu http://localhost:5000.
- Laden Sie ein Bild hoch und klicken Sie auf Hochladen und verarbeiten.
- Sehen Sie sich die Ergebnisse der Kantenerkennung an.
BEISPIELERGEBNIS
Abschluss
Wir haben eine einfache Webanwendung erstellt, die die Kantenerkennung mithilfe des Sobel-Operators und des Canny-Kantendetektors durchführt. Durch die Integration von Python, OpenCV, Flask und Bootstrap haben wir ein interaktives Tool erstellt, mit dem Benutzer Bilder hochladen und Kantenerkennungsergebnisse anzeigen können.
Nächste Schritte
- Verbessern Sie die Anwendung: Fügen Sie weitere Kantenerkennungsoptionen hinzu oder erlauben Sie Parameteranpassungen.
- Verbessern Sie die Benutzeroberfläche: Integrieren Sie mehr Bootstrap-Komponenten für ein besseres Benutzererlebnis.
- Weitere Informationen: Stellen Sie die App auf anderen Plattformen wie Heroku oder AWS bereit.
GitHub Repository: Edge-Erkennungs-App
Das obige ist der detaillierte Inhalt vonImplementierung der Kantenerkennung mit Python und OpenCV: Eine Schritt-für-Schritt-Anleitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.
