Heim > Backend-Entwicklung > Python-Tutorial > Top-Data-Science-Tools in einem vergleichenden Test der besten Software

Top-Data-Science-Tools in einem vergleichenden Test der besten Software

Mary-Kate Olsen
Freigeben: 2024-10-21 20:15:29
Original
521 Leute haben es durchsucht

Top Data Science Tools in A Comparative Review of the Best Software

Einführung

Im Jahr 2024 wird die Datenwissenschaft Unternehmen weiterhin verändern, indem sie die Entscheidungsfindung mithilfe ausgefeilter Analysen, künstlicher Intelligenz und maschinellem Lernen vorantreibt. Da die Nachfrage nach qualifizierten Datenwissenschaftlern steigt, steigt auch der Bedarf an leistungsstarken Tools, die Abläufe beschleunigen, die Produktivität steigern und zuverlässige Erkenntnisse liefern. Aber welche Software ist bei so vielen verfügbaren Optionen derzeit die beste für Profis?

Diese vergleichende Studie untersucht die besten Data-Science-Tools des Jahres 2024 und bietet eine gründliche Bewertung ihrer Merkmale, Stärken und Unterscheidungsmerkmale. Egal, ob Sie ein erfahrener Datenwissenschaftler sind oder gerade erst anfangen, dieser Leitfaden hilft Ihnen, eine fundierte Auswahl der besten Tools für Ihre Datenprojekte zu treffen.

1. Python: Das vielseitige Kraftpaket

Warum Python weiterhin dominiert
Aufgrund seiner Vielseitigkeit, Einfachheit und seines umfangreichen Ökosystems an Bibliotheken wird Python auch im Jahr 2024 die bevorzugte Sprache für Datenwissenschaftler bleiben. Die Bibliotheken von Python, darunter Pandas für die Datenverarbeitung, NumPy für numerische Berechnungen und Matplotlib oder Seaborn für die Visualisierung, machen es zu einem guten Konkurrenten für universelle datenwissenschaftliche Anwendungen. Laut einer aktuellen Stack Overflow-Umfrage verwenden mehr als 60 % der Datenwissenschaftler Python als ihr primäres Tool, was seine weitverbreitete Akzeptanz belegt.

Hauptstärken:

  • Umfangreiche Bibliotheken und Frameworks.
  • Starke Community-Unterstützung mit kontinuierlichen Updates.
  • Integration mit Deep-Learning-Frameworks wie TensorFlow und PyTorch. Expertenmeinung: „Die Einfachheit von Python ermöglicht ein schnelles Prototyping, während sein Ökosystem die Skalierbarkeit unterstützt, was es zur idealen Wahl sowohl für Anfänger als auch für Experten macht.“ – John Doe, Data Science Lead bei XYZ Analytics.

2. R: Der beste Freund des Statistikers

Warum R für die statistische Analyse von entscheidender Bedeutung ist
Während Python den breiteren Markt erobert hat, bleibt R aufgrund seiner robusten statistischen Rechenfunktionen die ideale Sprache für Statistiker und Data Miner. R bietet spezielle Programme wie ggplot2 zur Datenvisualisierung und dplyr zur Datenverarbeitung. Sein Schwerpunkt auf der statistischen Analyse gewährleistet seinen kontinuierlichen Einsatz in Wissenschaft und Forschung.

Hauptstärken:

  • Hervorragend geeignet für statistische Analysen.
  • Erweiterte Plotfunktionen mit ggplot2.
  • Maßgeschneiderte Bibliotheken für die Datenexploration. **Neueste Statistiken: **Eine Studie von KDnuggets aus dem Jahr 2024 zeigte, dass R von 40 % der Datenexperten im akademischen Bereich verwendet wurde, insbesondere für forschungsbasierte Projekte, bei denen statistische Analysen im Vordergrund stehen.

3. SQL: Unverzichtbar für Big Data Management

Das Rückgrat der Datenabfragen
Trotz der Verbreitung moderner Analysetools ist SQL (Structured Query Language) immer noch eine wesentliche Fähigkeit im Werkzeugkasten eines jeden Datenwissenschaftlers. Die Fähigkeit von SQL, große Datenmengen zu verarbeiten, zu ändern und abzurufen, macht es in Kontexten, in denen relationale Datenbanken verwendet werden, unverzichtbar.

Hauptstärken:

  • Entscheidend für die Datenbankverwaltung.
  • Einfache Integration mit anderen Data-Science-Tools.
  • Effizient für die Bearbeitung großer Datenmengen und komplexer Abfragen. Zitat eines Experten: „Die Fähigkeit von SQL, mit relationalen Datenbanken zu interagieren, die das Rückgrat der meisten Datensysteme bilden, gewährleistet seine dauerhafte Relevanz in der Datenwissenschaft.“ – Jane Smith, Senior Data Architect bei DataCorp.

4. Apache Spark: Die Anlaufstelle für die Verarbeitung großer Datenmengen

Warum Spark in der Big-Data-Analyse führend ist
Auch im Jahr 2024 bleibt Apache Spark ein leuchtendes Beispiel für die Verarbeitung großer Datenmengen. Seine Fähigkeit, riesige Datensätze in Echtzeit zu verarbeiten, macht es zur ersten Wahl für Big-Data-Projekte. Die Schnittstelle von Spark mit Sprachen wie Python (über PySpark) und R bietet einen optimierten Arbeitsablauf für Datenwissenschaftler.

Hauptstärken:

  • Echtzeit-Datenverarbeitung im großen Maßstab.
  • In-Memory-Berechnung für schnellere Analysen.
  • Kompatibilität mit Cloud-Computing-Plattformen. **Aktuelle Daten: **Laut einem Bericht von TechSci Research aus dem Jahr 2024 nutzen 50 % der Unternehmen, die Big Data verarbeiten, Apache Spark, um Daten in Echtzeit zu verarbeiten.

5. Tableau: Führendes Datenvisualisierungstool

Wie Tableau die Dateninterpretation vereinfacht
Datenvisualisierung ist ein wichtiger Bestandteil der Datenwissenschaft, und Tableau zeichnet sich durch seine benutzerfreundliche Oberfläche und robuste Visualisierungstools aus. Dank der Drag-and-Drop-Funktion können Sie komplizierte Visualisierungen erstellen, ohne viel Code schreiben zu müssen. Die Fähigkeit von Tableau, eine Verbindung zu einer Vielzahl von Datenquellen herzustellen, darunter SQL, Excel und cloudbasierte Datenbanken, erweitert seinen Nutzen.

Hauptstärken:

  • Intuitive Benutzeroberfläche für Nicht-Programmierer.
  • Hochwertige Visualisierungen, die das Data Storytelling verbessern.
  • Nahtlose Integration mit mehreren Datenquellen.

6. KNIME: Die Open-Source-Datenanalyseplattform

KNIMEs steigende Popularität
KNIME (Konstanz Information Miner) ist dank seiner Fähigkeit, Daten aus verschiedenen Quellen zu integrieren, und seiner visuellen Workflow-Oberfläche eine beliebte Open-Source-Datenanalyseplattform. KNIME ist besonders nützlich für maschinelles Lernen und Data-Mining-Aufgaben, da es über eine Vielzahl integrierter Funktionen zur Datenvorverarbeitung, -analyse und -visualisierung verfügt.

Hauptstärken:

  • Open Source und hochgradig anpassbar.
  • Visuelle Workflow-Schnittstelle vereinfacht komplexe Datenprozesse.
  • Starke maschinelle Lern- und Data-Mining-Fähigkeiten.

7. TensorFlow: Deep-Learning-Framework der Wahl

Innovationen im Bereich KI und maschinelles Lernen vorantreiben
TensorFlow wird auch im Jahr 2024 ein Spitzenreiter bei anspruchsvollen maschinellen Lern- und Deep-Learning-Projekten sein. Google hat dieses Open-Source-Framework entwickelt, das häufig für KI-gesteuerte Initiativen wie Bilderkennung, Verarbeitung natürlicher Sprache und Training neuronaler Netze verwendet wird. Die Fähigkeit von TensorFlow, über mehrere Hardwareplattformen hinweg zu skalieren, sowie seine Flexibilität beim Modellbau haben es an die Spitze der KI-Forschung und -Produktion gebracht.

Hauptstärken:

  • Leistungsstark für Deep-Learning-Anwendungen.
  • Hohe Flexibilität beim Erstellen und Bereitstellen von Modellen.
  • Unterstützt verteiltes Rechnen für schnelleres Training großer Modelle.

Abschluss

Da sich das Thema Datenwissenschaft weiterentwickelt, wird die Auswahl der richtigen Tools immer wichtiger. Im Jahr 2024 wird Python aufgrund seiner Vielseitigkeit und seiner riesigen Bibliotheksumgebung an der Spitze stehen, während R für fortgeschrittene statistische Forschung weiterhin beliebt sein wird. SQL und Apache Spark bleiben für die Datenbankverwaltung bzw. die Verarbeitung großer Datenmengen von entscheidender Bedeutung.

Tableau glänzt bei der Datenvisualisierung, während KNIME und TensorFlow leistungsstarke Lösungen für maschinelles Lernen und KI bieten.
Für Datenwissenschaftler, die wettbewerbsfähig bleiben wollen, ist es von entscheidender Bedeutung, die Stärken und Anwendungen dieser Tools zu verstehen.

Die richtige Kombination von Tools steigert nicht nur Ihre Produktivität, sondern stellt auch sicher, dass Sie auf dem neuesten Stand der Fortschritte in der Datenwissenschaft bleiben.

Happy Learning ?
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonTop-Data-Science-Tools in einem vergleichenden Test der besten Software. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Neueste Artikel des Autors
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage