


Welche Funktionen und Anwendungen bietet die Syntax „yield from' in Python 3.3?
Verwendungen und Funktionen der „Yield from“-Syntax in Python 3.3
Pythons „Yield from“-Syntax, die in PEP 380 eingeführt wurde, ermöglicht eine Verbesserung Funktionen für Generatoren und Coroutinen, die einen effizienteren und modulareren Code ermöglichen.
Praktische Anwendungen:
- Datenübertragung: "Ausbeute aus „vereinfacht den Prozess der Datenübertragung zwischen Generatoren. Es stellt eine bidirektionale Verbindung her und ermöglicht den Datenfluss in beide Richtungen. Diese Funktion ist besonders nützlich, wenn es um asynchrone Vorgänge oder Datenpipelines geht.
- Fehlerbehandlung: In Kombination mit Coroutinen ermöglicht „yield from“ eine nahtlose Ausnahmebehandlung. Es ermöglicht äußeren Funktionen, Fehler, die von Untergeneratoren verursacht werden, ordnungsgemäß zu verarbeiten und bietet so eine robustere und zuverlässigere Codebasis.
- Generatorzusammensetzung: „Ausbeute aus“ ermöglicht die Zusammensetzung mehrerer Generatoren zu einem einzelne, zusammenhängende Einheit. Dies vereinfacht komplexe Generator-Pipelines und macht Code besser verwaltbar und wiederverwendbar.
Der klassische Anwendungsfall:
Der klassische Anwendungsfall von „Yield From“ beinhaltet das Delegieren die Iteration eines verschachtelten Generators zu einem äußeren Generator. Dadurch entfällt die Notwendigkeit einer expliziten Iteration und die Codekomplexität wird reduziert. Zum Beispiel:
<code class="python">def main(): for x in (yield from sub_generator()): print(x)</code>
Vergleich mit Micro-Threads:
„Ausbeute aus“ wird aufgrund seiner asynchronen Natur oft mit Micro-Threads verglichen. Durch die „Übergabe der Kontrolle“ an Subgeneratoren wird die gleichzeitige Ausführung mehrerer Aufgaben innerhalb eines einzelnen Threads ermöglicht. Dadurch bietet es eine Alternative zum Erstellen separater Threads und reduziert den Overhead und potenzielle Race-Bedingungen.
Es ist jedoch wichtig zu beachten, dass „Yield From“ kein echtes Multithreading oder Parallelität einführt. Es bleibt innerhalb der Grenzen eines einzelnen Ausführungsthreads. Komplexe Aufgaben erfordern möglicherweise noch fortgeschrittenere Threading- oder Multiprocessing-Techniken für eine optimale Leistung.
Das obige ist der detaillierte Inhalt vonWelche Funktionen und Anwendungen bietet die Syntax „yield from' in Python 3.3?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
