Einführung:
Beim Arbeiten mit Pandas stoßen Benutzer möglicherweise auf „SettingWithCopy“-Warnungen Anlass zu Bedenken hinsichtlich des Verhaltens von Vorgängen in der Datenstruktur geben. Ziel dieses Artikels ist es, das Konzept verketteter Zuweisungen und ihre Auswirkungen in Pandas zu erläutern, mit besonderem Augenmerk auf die Rolle von .ix(), .iloc() und .loc().
In Pandas umfassen verkettete Zuweisungen eine Reihe von Vorgängen, die an einem DataFrame oder einer Serie ausgeführt werden und einer bestimmten Spalte oder einem bestimmten Element Werte zuweisen. Das direkte Zuweisen von Werten zu einer Serie oder einem DataFrame kann jedoch aufgrund der Erstellung potenzieller Kopien zu unerwartetem Verhalten führen.
Pandas gibt Warnungen aus (SettingWithCopyWarnings), wenn der Verdacht besteht, dass verkettete Zuweisungen vorhanden sind verwendet wird. Diese Warnungen zielen darauf ab, Benutzer auf mögliche unbeabsichtigte Konsequenzen aufmerksam zu machen, da sie dazu führen können, dass Kopien von Daten geändert werden, was zu Verwirrung führt.
Die Wahl der Methoden .ix(), .iloc() oder .loc() hat keinen direkten Einfluss auf verkettete Zuweisungen. Diese Methoden werden hauptsächlich für die Zeilen- und Spaltenauswahl verwendet und haben keinen Einfluss auf das Verhalten von Zuweisungen.
Verkettete Zuweisungen können möglicherweise zu unerwarteten Ergebnissen führen, wie z. B. der Erstellung von Datenkopien anstelle des ursprünglichen Objekts geändert. Dies kann zu Verwirrung führen und es schwierig machen, Änderungen zu verfolgen und den korrekten Zustand der Daten zu ermitteln.
Um verkettete Zuweisungen und die daraus resultierenden Warnungen zu vermeiden, wird empfohlen, Folgendes zu tun Führen Sie Operationen an Kopien von Daten und nicht an den Originalobjekten durch. Dadurch wird sichergestellt, dass Änderungen ohne Mehrdeutigkeit an der gewünschten Stelle angewendet werden.
Bei Bedarf können Benutzer die Warnungen zu Verkettungen deaktivieren, indem sie die Option „chained_assignment“ auf „Keine“ setzen. mit pd.set_option(). Es ist jedoch normalerweise nicht ratsam, diese Warnungen zu deaktivieren, da sie als wertvolle Indikatoren für potenzielle Probleme dienen.
Bedenken Sie das in der ursprünglichen Anfrage bereitgestellte Beispiel:
data['amount'] = data['amount'].astype(float) data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True) data["amount"].fillna(mean_avg, inplace=True)
In diesem Beispiel weist die erste Zeile der Spalte „Betrag“ Werte zu, wodurch möglicherweise eine Kopie erstellt wird oder auch nicht. Nachfolgende Zeilen bearbeiten die Spalte „Betrag“, bei der es sich möglicherweise um eine Kopie anstelle der Originaldaten handelt. Es ist expliziter, das Ergebnis der fillna()-Operationen einer neuen Spalte oder Variablen zuzuweisen, anstatt die Spalte „Betrag“ direkt zu ändern.
Um verkettete Zuweisungen in zu vermeiden Beispiel bereitgestellt wird der folgende Code empfohlen:
new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean")) data["new_amount"] = new_amount.fillna(mean_avg)
Das obige ist der detaillierte Inhalt vonWann werden verkettete Aufgaben bei Pandas problematisch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!