Inhaltsverzeichnis
Grundlegendes zu verketteten Zuweisungen in Pandas
Verkettete Zuweisungen erklärt
Erkennen verketteter Zuweisungen
Auswirkungen von .ix(), .iloc() und .loc() auf Chained Zuweisungen
Folgen verketteter Zuweisungen
Verkettung von Zuweisungen und Warnungen vermeiden
Warnungen zu verketteten Zuweisungen deaktivieren
Beispiel für eine verkettete Zuweisung
Empfohlener Code
Heim Backend-Entwicklung Python-Tutorial Wann werden verkettete Aufgaben bei Pandas problematisch?

Wann werden verkettete Aufgaben bei Pandas problematisch?

Oct 24, 2024 am 06:30 AM

When Do Chained Assignments Become Problematic in Pandas?

Grundlegendes zu verketteten Zuweisungen in Pandas

Einführung:

Beim Arbeiten mit Pandas stoßen Benutzer möglicherweise auf „SettingWithCopy“-Warnungen Anlass zu Bedenken hinsichtlich des Verhaltens von Vorgängen in der Datenstruktur geben. Ziel dieses Artikels ist es, das Konzept verketteter Zuweisungen und ihre Auswirkungen in Pandas zu erläutern, mit besonderem Augenmerk auf die Rolle von .ix(), .iloc() und .loc().

Verkettete Zuweisungen erklärt

In Pandas umfassen verkettete Zuweisungen eine Reihe von Vorgängen, die an einem DataFrame oder einer Serie ausgeführt werden und einer bestimmten Spalte oder einem bestimmten Element Werte zuweisen. Das direkte Zuweisen von Werten zu einer Serie oder einem DataFrame kann jedoch aufgrund der Erstellung potenzieller Kopien zu unerwartetem Verhalten führen.

Erkennen verketteter Zuweisungen

Pandas gibt Warnungen aus (SettingWithCopyWarnings), wenn der Verdacht besteht, dass verkettete Zuweisungen vorhanden sind verwendet wird. Diese Warnungen zielen darauf ab, Benutzer auf mögliche unbeabsichtigte Konsequenzen aufmerksam zu machen, da sie dazu führen können, dass Kopien von Daten geändert werden, was zu Verwirrung führt.

Auswirkungen von .ix(), .iloc() und .loc() auf Chained Zuweisungen

Die Wahl der Methoden .ix(), .iloc() oder .loc() hat keinen direkten Einfluss auf verkettete Zuweisungen. Diese Methoden werden hauptsächlich für die Zeilen- und Spaltenauswahl verwendet und haben keinen Einfluss auf das Verhalten von Zuweisungen.

Folgen verketteter Zuweisungen

Verkettete Zuweisungen können möglicherweise zu unerwarteten Ergebnissen führen, wie z. B. der Erstellung von Datenkopien anstelle des ursprünglichen Objekts geändert. Dies kann zu Verwirrung führen und es schwierig machen, Änderungen zu verfolgen und den korrekten Zustand der Daten zu ermitteln.

Verkettung von Zuweisungen und Warnungen vermeiden

Um verkettete Zuweisungen und die daraus resultierenden Warnungen zu vermeiden, wird empfohlen, Folgendes zu tun Führen Sie Operationen an Kopien von Daten und nicht an den Originalobjekten durch. Dadurch wird sichergestellt, dass Änderungen ohne Mehrdeutigkeit an der gewünschten Stelle angewendet werden.

Warnungen zu verketteten Zuweisungen deaktivieren

Bei Bedarf können Benutzer die Warnungen zu Verkettungen deaktivieren, indem sie die Option „chained_assignment“ auf „Keine“ setzen. mit pd.set_option(). Es ist jedoch normalerweise nicht ratsam, diese Warnungen zu deaktivieren, da sie als wertvolle Indikatoren für potenzielle Probleme dienen.

Beispiel für eine verkettete Zuweisung

Bedenken Sie das in der ursprünglichen Anfrage bereitgestellte Beispiel:

data['amount'] = data['amount'].astype(float)
data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True)
data["amount"].fillna(mean_avg, inplace=True)
Nach dem Login kopieren

In diesem Beispiel weist die erste Zeile der Spalte „Betrag“ Werte zu, wodurch möglicherweise eine Kopie erstellt wird oder auch nicht. Nachfolgende Zeilen bearbeiten die Spalte „Betrag“, bei der es sich möglicherweise um eine Kopie anstelle der Originaldaten handelt. Es ist expliziter, das Ergebnis der fillna()-Operationen einer neuen Spalte oder Variablen zuzuweisen, anstatt die Spalte „Betrag“ direkt zu ändern.

Empfohlener Code

Um verkettete Zuweisungen in zu vermeiden Beispiel bereitgestellt wird der folgende Code empfohlen:

new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean"))
data["new_amount"] = new_amount.fillna(mean_avg)
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWann werden verkettete Aufgaben bei Pandas problematisch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Apr 02, 2025 am 06:27 AM

Laden Sie die Gurkendatei in Python 3.6 Umgebungsfehler: ModulenotFoundError: Nomodulenamed ...

Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Apr 02, 2025 am 06:45 AM

Diskussion über die Gründe, warum Pipeline -Dateien beim Lernen und Verwendung von Scapy -Crawlern für anhaltende Datenspeicher nicht geschrieben werden können, können Sie auf Pipeline -Dateien begegnen ...

See all articles