


**Warum erscheinen meine OpenCV-Bilder beim Plotten mit Matplotlib farbverzerrt?**
Farbdiskrepanz beim Laden von OpenCV-Bildern behoben
Beim Laden von Farbbildern mit Python OpenCV zum anschließenden Plotten wurde beobachtet, dass die angezeigten Farben verzerrt erscheinen . Dieses Problem entsteht aufgrund der unterschiedlichen Farbraumdarstellungen, die von OpenCV und matplotlib verwendet werden.
Den Farbraumunterschied verstehen:
OpenCV verwendet den BGR (Blau-Grün-Rot). ) Farbraum, während Matplotlib den RGB-Farbraum (Rot-Grün-Blau) verwendet. Diese Inkompatibilität führt zu einer Verwechslung der Farben bei der Anzeige dieser Bilder.
Lösung des Problems:
Um dieses Problem zu beheben, ist es notwendig, das Bild in zu konvertieren den RGB-Farbraum, bevor Sie ihn plotten. Dies kann mit der Konvertierungsfunktion von OpenCV erfolgen:
<code class="python">RGB_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)</code>
Dieser Schritt stellt sicher, dass die Farben im geplotteten Bild genau das ursprüngliche Eingabebild widerspiegeln.
Beispiel:
Der folgende Codeausschnitt demonstriert diese Lösung:
<code class="python">import cv2 import matplotlib.pyplot as plt # Loading the image using OpenCV (BGR by default) img = cv2.imread('lena_caption.png') # Converting the image to RGB RGB_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Plotting the original and converted RGB image plt.subplot(1, 2, 1), plt.imshow(img) plt.title('Original Image (BGR)') plt.subplot(1, 2, 2), plt.imshow(RGB_img) plt.title('Converted RGB Image') plt.show()</code>
Durch den Einsatz dieser Konvertierungstechnik können wir Farbbilder mit OpenCV und matplotlib erfolgreich laden und plotten, ohne dass es zu Farbverzerrungen kommt.
Das obige ist der detaillierte Inhalt von**Warum erscheinen meine OpenCV-Bilder beim Plotten mit Matplotlib farbverzerrt?**. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.
