


Wie kann ich mit HTML5-Canvas eine qualitativ hochwertige Bildverkleinerung erreichen, obwohl Browser-Rendering-Optimierungen zu schlechten Ergebnissen führen?
HTML5 Canvas: Bilder mit hoher Qualität verkleinern
Problem: Das Verkleinern von Bildern mit HTML5 Canvas führt zu schlechter Qualität Ausgabe trotz aktivierter Bildwiedergabeoptimierungen.
Lösung:
Beim Herunterskalieren von Bildern im HTML5-Canvas werden mehrere Pixel im Originalbild in ein einzelnes Pixel im skalierten Bild umgewandelt. Gängige Herunterskalierungstechniken in Browsern handhaben diesen Prozess ineffizient, was zu Detailverlust und Rauschen führt.
Um eine qualitativ hochwertige Herunterskalierung zu erreichen, sollten Sie die Verwendung eines pixelgenauen Algorithmus in Betracht ziehen, der die Beiträge aller Quellpixel zum Ziel genau berechnet Pixel.
Algorithmus:
<code class="javascript">// scales the canvas by (float) scale < 1 // returns a new canvas containing the scaled image. function downScaleCanvas(cv, scale) { if (!(scale < 1) || !(scale > 0)) throw ('scale must be a positive number <1 '); var sqScale = scale * scale; // square scale = area of source pixel within target var sw = cv.width; // source image width var sh = cv.height; // source image height var tw = Math.floor(sw * scale); // target image width var th = Math.floor(sh * scale); // target image height var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array var tX = 0, tY = 0; // rounded tx, ty var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y // weight is weight of current source point within target. // next weight is weight of current source point within next target's point. var crossX = false; // does scaled px cross its current px right border ? var crossY = false; // does scaled px cross its current px bottom border ? var sBuffer = cv.getContext('2d'). getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb var sR = 0, sG = 0, sB = 0; // source's current point r,g,b for (sy = 0; sy < sh; sy++) { ty = sy * scale; // y src position within target tY = 0 | ty; // rounded : target pixel's y yIndex = 3 * tY * tw; // line index within target array crossY = (tY != (0 | ty + scale)); if (crossY) { // if pixel is crossing botton target pixel wy = (tY + 1 - ty); // weight of point within target pixel nwy = (ty + scale - tY - 1); // ... within y+1 target pixel } for (sx = 0; sx < sw; sx++, sIndex += 4) { tx = sx * scale; // x src position within target tX = 0 | tx; // rounded : target pixel's x tIndex = yIndex + tX * 3; // target pixel index within target array crossX = (tX != (0 | tx + scale)); if (crossX) { // if pixel is crossing target pixel's right wx = (tX + 1 - tx); // weight of point within target pixel nwx = (tx + scale - tX - 1); // ... within x+1 target pixel } sR = sBuffer[sIndex ]; // retrieving r,g,b for curr src px. sG = sBuffer[sIndex + 1]; sB = sBuffer[sIndex + 2]; if (!crossX && !crossY) { // pixel does not cross // just add components weighted by squared scale. tBuffer[tIndex ] += sR * sqScale; tBuffer[tIndex + 1] += sG * sqScale; tBuffer[tIndex + 2] += sB * sqScale; } else if (crossX && !crossY) { // cross on X only w = wx * scale; // add weighted component for current px tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // add weighted component for next (tX+1) px nw = nwx * scale tBuffer[tIndex + 3] += sR * nw; tBuffer[tIndex + 4] += sG * nw; tBuffer[tIndex + 5] += sB * nw; } else if (crossY && !crossX) { // cross on Y only w = wy * scale; // add weighted component for current px tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // add weighted component for next (tY+1) px nw = nwy * scale tBuffer[tIndex + 3 * tw ] += sR * nw; tBuffer[tIndex + 3 * tw + 1] += sG * nw; tBuffer[tIndex + 3 * tw + 2] += sB * nw; } else { // crosses both x and y : four target points involved // add weighted component for current px w = wx * wy; tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // for tX + 1; tY px nw = nwx * wy; tBuffer[tIndex + 3] += sR * nw; tBuffer[tIndex + 4] += sG * nw; tBuffer[tIndex + 5] += sB * nw; // for tX ; tY + 1 px nw = wx * nwy; tBuffer[tIndex + 3 * tw ] += sR * nw; tBuffer[tIndex + 3 * tw + 1] += sG * nw; tBuffer[tIndex + 3 * tw + 2] += sB * nw; // for tX + 1 ; tY +1 px nw = nwx * nwy; tBuffer[tIndex + 3 * tw + 3] += sR * nw; tBuffer[tIndex + 3 * tw + 4] += sG * nw; tBuffer[tIndex + 3 * tw + 5] += sB * nw; } } // end for sx } // end for sy // create result canvas var resCV = document.createElement('canvas'); resCV.width = tw; resCV.height = th; var resCtx = resCV.getContext('2d'); var imgRes = resCtx.getImageData(0, 0, tw, th); var tByteBuffer = imgRes.data; // convert float32 array into a UInt8Clamped Array var pxIndex = 0; // for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) { tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]); tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]); tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]); tByteBuffer[tIndex + 3] = 255; } // writing result to canvas. resCtx.putImageData(imgRes, 0, 0); return resCV; }</code>
Zusätzliche Hinweise:
- Upsampling kann auch mit dem erreicht werden derselbe Algorithmus durch Verwendung von Skalen größer als 1.
- Der Algorithmus ist speicherintensiv und möglicherweise nicht für sehr große Bilder oder Echtzeitanwendungen geeignet.
- Für kleinere Bilder oder unkritische Verwendung In einigen Fällen können einfachere Methoden wie die Verwendung der standardmäßigen 2X-Skalierung des Browsers oder die Anwendung bilinearer Interpolation ausreichen.
Das obige ist der detaillierte Inhalt vonWie kann ich mit HTML5-Canvas eine qualitativ hochwertige Bildverkleinerung erreichen, obwohl Browser-Rendering-Optimierungen zu schlechten Ergebnissen führen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Die Verschiebung von C/C zu JavaScript erfordert die Anpassung an dynamische Typisierung, Müllsammlung und asynchrone Programmierung. 1) C/C ist eine statisch typisierte Sprache, die eine manuelle Speicherverwaltung erfordert, während JavaScript dynamisch eingegeben und die Müllsammlung automatisch verarbeitet wird. 2) C/C muss in den Maschinencode kompiliert werden, während JavaScript eine interpretierte Sprache ist. 3) JavaScript führt Konzepte wie Verschlüsse, Prototypketten und Versprechen ein, die die Flexibilität und asynchrone Programmierfunktionen verbessern.

Zu den Hauptanwendungen von JavaScript in der Webentwicklung gehören die Interaktion der Clients, die Formüberprüfung und die asynchrone Kommunikation. 1) Dynamisches Inhaltsaktualisierung und Benutzerinteraktion durch DOM -Operationen; 2) Die Kundenüberprüfung erfolgt vor dem Einreichung von Daten, um die Benutzererfahrung zu verbessern. 3) Die Aktualisierung der Kommunikation mit dem Server wird durch AJAX -Technologie erreicht.

Die Anwendung von JavaScript in der realen Welt umfasst Front-End- und Back-End-Entwicklung. 1) Zeigen Sie Front-End-Anwendungen an, indem Sie eine TODO-Listanwendung erstellen, die DOM-Operationen und Ereignisverarbeitung umfasst. 2) Erstellen Sie RESTFUFFUPI über Node.js und express, um Back-End-Anwendungen zu demonstrieren.

Es ist für Entwickler wichtig, zu verstehen, wie die JavaScript -Engine intern funktioniert, da sie effizientere Code schreibt und Leistungs Engpässe und Optimierungsstrategien verstehen kann. 1) Der Workflow der Engine umfasst drei Phasen: Parsen, Kompilieren und Ausführung; 2) Während des Ausführungsprozesses führt die Engine dynamische Optimierung durch, wie z. B. Inline -Cache und versteckte Klassen. 3) Zu Best Practices gehören die Vermeidung globaler Variablen, die Optimierung von Schleifen, die Verwendung von const und lass und die Vermeidung übermäßiger Verwendung von Schließungen.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Sowohl Python als auch JavaScripts Entscheidungen in Entwicklungsumgebungen sind wichtig. 1) Die Entwicklungsumgebung von Python umfasst Pycharm, Jupyternotebook und Anaconda, die für Datenwissenschaft und schnelles Prototyping geeignet sind. 2) Die Entwicklungsumgebung von JavaScript umfasst Node.JS, VSCODE und WebPack, die für die Entwicklung von Front-End- und Back-End-Entwicklung geeignet sind. Durch die Auswahl der richtigen Tools nach den Projektbedürfnissen kann die Entwicklung der Entwicklung und die Erfolgsquote der Projekte verbessert werden.

C und C spielen eine wichtige Rolle in der JavaScript -Engine, die hauptsächlich zur Implementierung von Dolmetschern und JIT -Compilern verwendet wird. 1) C wird verwendet, um JavaScript -Quellcode zu analysieren und einen abstrakten Syntaxbaum zu generieren. 2) C ist für die Generierung und Ausführung von Bytecode verantwortlich. 3) C implementiert den JIT-Compiler, optimiert und kompiliert Hot-Spot-Code zur Laufzeit und verbessert die Ausführungseffizienz von JavaScript erheblich.
