


Warum ist das Listenverständnis deutlich schneller als das Anhängen an eine Liste in Python?
Oct 28, 2024 am 03:47 AMWarum ist das Anhängen an eine Liste wesentlich langsamer als das Listenverständnis?
Das Listenverständnis hat in Python aufgrund seiner Kürze und Effizienz an Popularität gewonnen. Obwohl es wie eine syntaktische Abkürzung für eine reguläre for-Schleife erscheinen mag, bietet es erhebliche Leistungsvorteile, insbesondere beim Anhängen von Elementen an eine Liste.
Benchmarking des Unterschieds
Bedenken Sie das folgende Code-Snippet:
import timeit timeit.timeit(stmt=''' t = [] for i in range(10000): t.append(i)''', number=10000) timeit.timeit(stmt='t= [i for i in range(10000)]', number=10000)
Wie aus den Ergebnissen hervorgeht, ist das Listenverständnis wesentlich schneller und übertrifft den anhängenden Ansatz um etwa 50 %.
Eintauchen in die Gründe
Listenverständnis ist im Wesentlichen ein syntaktisches Konstrukt, das eine neue Liste basierend auf einer vorhandenen Iteration generiert. Im Gegensatz zur Appending-Methode ist es nicht erforderlich, das Append-Attribut bei jeder Iteration abzurufen und aufzurufen.
Code-Disassemblierung
Eine tiefere Analyse mit dem Disassembler liefert Erkenntnisse in die zugrunde liegenden Unterschiede:
# Function using appending dis.dis(f1)
Im zerlegten Code für die Funktion, die das Anhängen verwendet, gibt es ein auffälliges LOAD_METHOD- und CALL_METHOD-Paar für jede Iteration (Bytecodes 18-22). Diese Anweisungen handhaben das Laden und Aufrufen des Append-Attributs, was einen Overhead verursacht.
# Function using list comprehension dis.dis(f2)
Im Gegensatz dazu umfasst die Listenverständnisversion (Bytecodes 10-12) eine einzelne CALL_FUNCTION-Anweisung. Diese Anweisung erstellt effizient eine neue Liste, ohne dass ein Attributabruf erforderlich ist.
Fazit
Die verbesserte Effizienz des Listenverständnisses ergibt sich aus der optimierten Implementierung. Durch die Vermeidung des wiederholten Ladens und Aufrufens des Append-Attributs erstellt das Listenverständnis Listen bei Bedarf, was zu erheblichen Leistungssteigerungen führt, insbesondere bei der Arbeit mit großen Iterationen.
Das obige ist der detaillierte Inhalt vonWarum ist das Listenverständnis deutlich schneller als das Anhängen an eine Liste in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heißer Artikel

Hot-Tools-Tags

Heißer Artikel

Heiße Artikel -Tags

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

So herunterladen Sie Dateien in Python

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?

Einführung des natürlichen Sprach -Toolkits (NLTK)
