Heim Backend-Entwicklung Python-Tutorial Warum ist das Listenverständnis deutlich schneller als das Anhängen an eine Liste in Python?

Warum ist das Listenverständnis deutlich schneller als das Anhängen an eine Liste in Python?

Oct 28, 2024 am 03:47 AM

Why is List Comprehension Significantly Faster Than Appending to a List in Python?

Warum ist das Anhängen an eine Liste wesentlich langsamer als das Listenverständnis?

Das Listenverständnis hat in Python aufgrund seiner Kürze und Effizienz an Popularität gewonnen. Obwohl es wie eine syntaktische Abkürzung für eine reguläre for-Schleife erscheinen mag, bietet es erhebliche Leistungsvorteile, insbesondere beim Anhängen von Elementen an eine Liste.

Benchmarking des Unterschieds

Bedenken Sie das folgende Code-Snippet:

import timeit

timeit.timeit(stmt='''
t = []
for i in range(10000):
    t.append(i)''', number=10000)

timeit.timeit(stmt='t= [i for i in range(10000)]', number=10000)
Nach dem Login kopieren

Wie aus den Ergebnissen hervorgeht, ist das Listenverständnis wesentlich schneller und übertrifft den anhängenden Ansatz um etwa 50 %.

Eintauchen in die Gründe

Listenverständnis ist im Wesentlichen ein syntaktisches Konstrukt, das eine neue Liste basierend auf einer vorhandenen Iteration generiert. Im Gegensatz zur Appending-Methode ist es nicht erforderlich, das Append-Attribut bei jeder Iteration abzurufen und aufzurufen.

Code-Disassemblierung

Eine tiefere Analyse mit dem Disassembler liefert Erkenntnisse in die zugrunde liegenden Unterschiede:

# Function using appending
dis.dis(f1)
Nach dem Login kopieren

Im zerlegten Code für die Funktion, die das Anhängen verwendet, gibt es ein auffälliges LOAD_METHOD- und CALL_METHOD-Paar für jede Iteration (Bytecodes 18-22). Diese Anweisungen handhaben das Laden und Aufrufen des Append-Attributs, was einen Overhead verursacht.

# Function using list comprehension
dis.dis(f2)
Nach dem Login kopieren

Im Gegensatz dazu umfasst die Listenverständnisversion (Bytecodes 10-12) eine einzelne CALL_FUNCTION-Anweisung. Diese Anweisung erstellt effizient eine neue Liste, ohne dass ein Attributabruf erforderlich ist.

Fazit

Die verbesserte Effizienz des Listenverständnisses ergibt sich aus der optimierten Implementierung. Durch die Vermeidung des wiederholten Ladens und Aufrufens des Append-Attributs erstellt das Listenverständnis Listen bei Bedarf, was zu erheblichen Leistungssteigerungen führt, insbesondere bei der Arbeit mit großen Iterationen.

Das obige ist der detaillierte Inhalt vonWarum ist das Listenverständnis deutlich schneller als das Anhängen an eine Liste in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße Artikel -Tags

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Mar 10, 2025 pm 06:54 PM

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

So herunterladen Sie Dateien in Python So herunterladen Sie Dateien in Python Mar 01, 2025 am 10:03 AM

So herunterladen Sie Dateien in Python

Bildfilterung in Python Bildfilterung in Python Mar 03, 2025 am 09:44 AM

Bildfilterung in Python

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden Mar 05, 2025 am 09:58 AM

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

Wie man mit PDF -Dokumenten mit Python arbeitet Wie man mit PDF -Dokumenten mit Python arbeitet Mar 02, 2025 am 09:54 AM

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Mar 02, 2025 am 10:10 AM

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Mar 10, 2025 pm 06:52 PM

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?

Einführung des natürlichen Sprach -Toolkits (NLTK) Einführung des natürlichen Sprach -Toolkits (NLTK) Mar 01, 2025 am 10:05 AM

Einführung des natürlichen Sprach -Toolkits (NLTK)

See all articles