Es wird allgemein angenommen, dass gleichzeitige Algorithmen schneller sind als sequenzielle. Allerdings ist im angegebenen Code die gleichzeitige Version des Sieve of Eratosthenes-Algorithmus langsamer als die sequentielle Version. In diesem Artikel werden die Gründe für dieses unerwartete Ergebnis untersucht, potenzielle Probleme im bereitgestellten Code hervorgehoben und einige Optimierungen vorgeschlagen, um die Leistung sowohl der sequentiellen als auch der gleichzeitigen Implementierungen zu verbessern.
Die PrimesSeq-Klasse implementiert die sequentielle Version des Sieve of Eratosthenes-Algorithmus. Es verwendet ein Byte-Array bitArr, um das Sieb darzustellen. Jedes Bit im Array stellt eine Zahl dar, und wenn das Bit gesetzt ist, wird die Zahl als Nicht-Primzahl markiert. Der Algorithmus iteriert über das Sieb, beginnend bei 2, und markiert alle Vielfachen der aktuellen Zahl als Nicht-Primzahl. Die Funktion isPrime prüft, ob eine Zahl eine Primzahl ist, indem sie prüft, ob das entsprechende Bit im Sieb nicht gesetzt ist. Die printAllPrimes-Funktion druckt alle vom Algorithmus gefundenen Primzahlen.
Die PrimesPara-Klasse implementiert die gleichzeitige Version des Sieve of Eratosthenes-Algorithmus. Es unterteilt das Sieb in mehrere Chunks und weist jeden Chunk einem separaten Thread zu. Jeder Thread ist dafür verantwortlich, Vielfache der ihm zugewiesenen Zahlen als Nicht-Primzahlen zu kennzeichnen. Der Hauptthread ist für die Generierung der anfänglichen Primzahlen und den Start der Threads verantwortlich. Die Funktion „crossOut“ wird verwendet, um eine Zahl als Nicht-Primzahl zu markieren. Die Funktion „generateErastothenesConcurrently“ generiert die Primzahlen gleichzeitig.
Im angegebenen Code ist die gleichzeitige Version des Algorithmus etwa zehnmal langsamer als die sequentielle Version. Dies ist unerwartet, da gleichzeitige Algorithmen normalerweise schneller sind als sequentielle.
Der bereitgestellte Code weist einige potenzielle Engpässe auf:
Es gibt einige Optimierungen, die sowohl auf die sequentielle als auch auf die gleichzeitige Implementierung angewendet werden können:
Während gleichzeitige Algorithmen im Allgemeinen schneller sind als sequenzielle In einigen Fällen ist der sequentielle Algorithmus möglicherweise schneller. Im Fall des Sieve of Eratosthenes-Algorithmus kann der Mehraufwand für die Thread-Erstellung und -Synchronisierung, falsches Teilen und Lastungleichgewicht die Vorteile der Parallelität überwiegen.
Durch die Anwendung der in diesem Artikel beschriebenen Optimierungen ist dies möglich Verbessern Sie die Leistung sowohl der sequentiellen als auch der gleichzeitigen Implementierungen des Sieve of Eratosthenes-Algorithmus.
Das obige ist der detaillierte Inhalt vonWarum ist der Concurrent Sieve of Eratosthenes-Algorithmus langsamer als die sequentielle Version?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!