5 häufige Python-Fallstricke bei der Datenvorbereitung
Python ist eine leistungsstarke Sprache für die Datenaufbereitung, aber es gibt einige häufige Fehler oder Fallstricke, auf die Menschen stoßen können. In diesem Blogbeitrag werde ich Besprechen Sie fünf der häufigsten Probleme, mit denen Menschen bei der Nutzung konfrontiert werden Python zur Datenvorbereitung.
1. Betrachtet fehlende Werte (`NaN`) als falsch.
Falsch, Keine und 0 (beliebigen numerischen Typs) werden alle als Falsch ausgewertet.
Dieser Satz von Objekten und Werten wird als „falsch“ und „falsch“ bezeichnet als falsch auswerten. NaN oder fehlende Werte sind nicht falsch und daher wird nicht als falsch ausgewertet. Dies kann bei vielen Vorgängen zu großer Verwirrung und unerwartetem Verhalten führen.
2. Versuch, fehlende Werte zu vergleichen
Es scheint einfach genug, dass NaN == NaN „true“ zurückgibt. Beide Werte „sehen“ gleich aus.
Da es jedoch unmöglich ist zu wissen, ob die beiden fehlenden Werte gleich sind, wird dieser Vorgang immer „false“ zurückgeben.
3. Ich denke, dass all() nur dann true zurückgibt, wenn alle Elemente wahr sind.
Die all()-Methode gibt true zurück, wenn alle Elemente der Iterable wahr sind (oder wenn das Iterable ist leer).
Betrachten Sie es nicht als „Gib true zurück, wenn alle Elemente des iterable sind wahr“, sondern „Gib true zurück, wenn es keine false gibt.“ Elemente im Iterable.“
Wenn das Iterable leer ist, kann es keine falschen Elemente darin enthalten, was bedeutet, dass all([]) als True ausgewertet wird.
4. Konvertieren in boolesche Werte
Pandas folgt der Numpy-Konvention, einen Fehler auszulösen, wenn Sie Versuchen Sie, etwas in einen Bool umzuwandeln. Dies geschieht in einem if oder when using die booleschen Operationen und, oder, oder nicht.
Es ist nicht klar, wie das Ergebnis aussehen soll. Sollte es wahr sein weil es nicht die Länge Null hat? Falsch, weil es falsche Werte gibt?
Es ist unklar, daher löst Pandas stattdessen einen ValueError aus
ValueError: Der Wahrheitswert einer Serie ist nicht eindeutig.
Verwenden Sie a.empty, a.bool() a.item(),a.any() oder a.all().
5. Die Ergebnisse der isin()-Operation verstehen.
Die isin()-Operation gibt eine boolesche Reihe zurück ob jedes Element in der Serie genau im übergebenen enthalten ist Folge von Werten.
s = pd.Series(['dog', 'cat', 'fish']) >>> s.isin(['bird']) 0 False 1 False 2 False dtype: bool
Beachten Sie, dass „Vogel“ in der Reihe nicht existiert.
>>> s.isin(['bird', 'cat']) 0 False 1 True 2 False dtype: bool
Beachten Sie „Katze“ existiert im 2. Wert der Reihe.
Erfahren Sie mehr über die Verwendung von Python zur Datenvorbereitung
Python ist eine mächtige Sprache, aber es kann zu Verwirrung kommen fehlende und boolesche Werte. Beachten Sie, dass fehlende Werte vorhanden sind gelten als falsch und können nicht verglichen werden.
Bedenken Sie bei Verwendung der all()-Methode, dass sie zurückgibt true, wenn die Iterable keine falschen Werte enthält. Wenn alle Werte vorhanden sind fehlen, wie im Fall eines leeren Arrays, gibt all() ebenfalls true zurück, da fehlende Werte nicht als falsch betrachtet werden.
Wenn Sie beim Versuch, in Bool-Werte zu konvertieren, einen ValueError erhalten, befolgen Sie unbedingt die hilfreichen Ratschläge und verwenden Sie eine der vorgeschlagenen Methoden.
Das obige ist der detaillierte Inhalt von5 häufige Python-Fallstricke bei der Datenvorbereitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

Um den Python-Code im Sublime-Text auszuführen, müssen Sie zuerst das Python-Plug-In installieren, dann eine .py-Datei erstellen und den Code schreiben, und drücken Sie schließlich Strg B, um den Code auszuführen, und die Ausgabe wird in der Konsole angezeigt.

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Golang ist in Bezug auf Leistung und Skalierbarkeit besser als Python. 1) Golangs Kompilierungseigenschaften und effizientes Parallelitätsmodell machen es in hohen Parallelitätsszenarien gut ab. 2) Python wird als interpretierte Sprache langsam ausgeführt, kann aber die Leistung durch Tools wie Cython optimieren.

Das Schreiben von Code in Visual Studio Code (VSCODE) ist einfach und einfach zu bedienen. Installieren Sie einfach VSCODE, erstellen Sie ein Projekt, wählen Sie eine Sprache aus, erstellen Sie eine Datei, schreiben Sie Code, speichern und führen Sie es aus. Die Vorteile von VSCODE umfassen plattformübergreifende, freie und open Source, leistungsstarke Funktionen, reichhaltige Erweiterungen sowie leichte und schnelle.

Das Ausführen von Python-Code in Notepad erfordert, dass das ausführbare Python-ausführbare Datum und das NPPEXEC-Plug-In installiert werden. Konfigurieren Sie nach dem Installieren von Python und dem Hinzufügen des Pfades den Befehl "Python" und den Parameter "{current_directory} {file_name}" im NPPExec-Plug-In, um Python-Code über den Shortcut-Taste "F6" in Notoza auszuführen.
