Heim Backend-Entwicklung Python-Tutorial Implementierung eines Perzeptrons von Grund auf in Python

Implementierung eines Perzeptrons von Grund auf in Python

Oct 30, 2024 pm 10:11 PM

Implementing a Perceptron from Scratch in Python

Hallo Entwickler,

Das Perzeptron ist eines der einfachsten und grundlegendsten Konzepte des maschinellen Lernens. Es handelt sich um einen binären linearen Klassifikator, der die Grundlage neuronaler Netze bildet. In diesem Beitrag werde ich die Schritte durchgehen, um ein Perceptron von Grund auf in Python zu verstehen und zu implementieren.

Lass uns eintauchen!


Was ist ein Perzeptron?

Ein Perceptron ist ein grundlegender Algorithmus für das überwachte Lernen binärer Klassifikatoren. Bei gegebenen Eingabemerkmalen lernt das Perceptron Gewichtungen, die dabei helfen, Klassen auf der Grundlage einer einfachen Schwellenwertfunktion zu trennen. So funktioniert es in einfachen Worten:

  1. Eingabe: Ein Vektor von Features (z. B. [x1, x2]).
  2. Gewichte: Jede Eingabefunktion hat eine Gewichtung, die das Modell basierend auf der Leistung des Modells anpasst.
  3. Aktivierungsfunktion: Berechnet die gewichtete Summe der Eingabemerkmale und wendet einen Schwellenwert an, um zu entscheiden, ob das Ergebnis zu der einen oder anderen Klasse gehört.

Mathematisch gesehen sieht es so aus:

f(x) = w1*x1 w2*x2 ... wn*xn b

Wo:

  • f(x) ist die Ausgabe,
  • w steht für Gewichte,
  • x stellt Eingabefunktionen dar und
  • b ist der Bias-Begriff.

Wenn f(x) größer oder gleich einem Schwellenwert ist, ist die Ausgabe Klasse 1; andernfalls ist es Klasse 0.


Schritt 1: Bibliotheken importieren

Wir werden hier nur NumPy für Matrixoperationen verwenden, um die Dinge übersichtlich zu halten.

import numpy as np
Nach dem Login kopieren
Nach dem Login kopieren

Schritt 2: Definieren Sie die Perceptron-Klasse

Wir werden das Perceptron als Klasse aufbauen, um alles organisiert zu halten. Der Kurs umfasst Methoden zum Training und zur Vorhersage.

class Perceptron:
    def __init__(self, learning_rate=0.01, epochs=1000):
        self.learning_rate = learning_rate
        self.epochs = epochs
        self.weights = None
        self.bias = None

    def fit(self, X, y):
        # Number of samples and features
        n_samples, n_features = X.shape

        # Initialize weights and bias
        self.weights = np.zeros(n_features)
        self.bias = 0

        # Training
        for _ in range(self.epochs):
            for idx, x_i in enumerate(X):
                # Calculate linear output
                linear_output = np.dot(x_i, self.weights) + self.bias
                # Apply step function
                y_predicted = self._step_function(linear_output)

                # Update weights and bias if there is a misclassification
                if y[idx] != y_predicted:
                    update = self.learning_rate * (y[idx] - y_predicted)
                    self.weights += update * x_i
                    self.bias += update

    def predict(self, X):
        # Calculate linear output and apply step function
        linear_output = np.dot(X, self.weights) + self.bias
        y_predicted = self._step_function(linear_output)
        return y_predicted

    def _step_function(self, x):
        return np.where(x >= 0, 1, 0)
Nach dem Login kopieren

Im Code oben:

  • fit: Diese Methode trainiert das Modell, indem sie Gewichte und Bias anpasst, wenn ein Punkt falsch klassifiziert wird.
  • vorhersagen: Diese Methode berechnet Vorhersagen für neue Daten.
  • _step_function: Diese Funktion wendet einen Schwellenwert an, um die Ausgabeklasse zu bestimmen.

Schritt 3: Bereiten Sie einen einfachen Datensatz vor

Wir verwenden einen kleinen Datensatz, um die Visualisierung der Ausgabe zu erleichtern. Hier ist ein einfacher UND-Gatter-Datensatz:

# AND gate dataset
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 0, 0, 1])  # Labels for AND gate
Nach dem Login kopieren

Schritt 4: Trainieren und testen Sie das Perzeptron

Jetzt trainieren wir das Perzeptron und testen seine Vorhersagen.

# Initialize Perceptron
p = Perceptron(learning_rate=0.1, epochs=10)

# Train the model
p.fit(X, y)

# Test the model
print("Predictions:", p.predict(X))
Nach dem Login kopieren

Erwartete Ausgabe für UND-Gatter:

import numpy as np
Nach dem Login kopieren
Nach dem Login kopieren

Erklärung des Perceptron-Lernprozesses

  1. Gewichte und Bias initialisieren: Zu Beginn werden die Gewichte auf Null gesetzt, sodass das Modell von Grund auf mit dem Lernen beginnen kann.
  2. Lineare Ausgabe berechnen: Für jeden Datenpunkt berechnet das Perceptron die gewichtete Summe der Eingaben plus den Bias.
  3. Aktivierung (Schrittfunktion): Wenn die lineare Ausgabe größer oder gleich Null ist, wird Klasse 1 zugewiesen; andernfalls wird Klasse 0 zugewiesen.
  4. Aktualisierungsregel: Wenn die Vorhersage falsch ist, passt das Modell Gewichte und Bias in die Richtung an, die den Fehler verringert. Die Aktualisierungsregel ist gegeben durch: Gewichte = learning_rate * (y_true - y_pred) * x

Dadurch erfolgt die Perceptron-Aktualisierung nur für falsch klassifizierte Punkte, wodurch das Modell schrittweise näher an die korrekte Entscheidungsgrenze herangeführt wird.


Visualisierung von Entscheidungsgrenzen

Visualisierung der Entscheidungsgrenze nach dem Training. Dies ist besonders hilfreich, wenn Sie mit komplexeren Datensätzen arbeiten. Im Moment halten wir es einfach mit dem UND-Gatter.


Erweiterung auf Multi-Layer-Perceptrons (MLPs)

Während das Perceptron auf linear trennbare Probleme beschränkt ist, ist es die Grundlage komplexerer neuronaler Netze wie Multi-Layer Perceptrons (MLPs). Mit MLPs fügen wir versteckte Ebenen und Aktivierungsfunktionen (wie ReLU oder Sigmoid) hinzu, um nichtlineare Probleme zu lösen.


Zusammenfassung

Das Perceptron ist ein unkomplizierter, aber grundlegender Algorithmus für maschinelles Lernen. Indem wir die Funktionsweise verstehen und von Grund auf implementieren, erhalten wir Einblicke in die Grundlagen des maschinellen Lernens und neuronaler Netze. Die Schönheit des Perceptron liegt in seiner Einfachheit, was es zu einem perfekten Ausgangspunkt für alle macht, die sich für KI interessieren.

Das obige ist der detaillierte Inhalt vonImplementierung eines Perzeptrons von Grund auf in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

See all articles