So setzen Sie Indizes in Pandas DataFrames zurück: „reset_index()' vs. „reindex()'?

Susan Sarandon
Freigeben: 2024-10-31 05:10:30
Original
163 Leute haben es durchsucht

How to Reset Indexes in Pandas DataFrames: `reset_index()` vs. `reindex()`?

Indizes in Pandas-Datenrahmen zurücksetzen

Der Umgang mit fehlenden oder problematischen Indizes in Pandas-Datenrahmen kann frustrierend sein. Ein häufiges Szenario ist die Notwendigkeit, Indizes nach dem Entfernen bestimmter Zeilen zurückzusetzen, was zu einer verstreuten Indexsequenz führt. Um dieses Problem anzugehen, werden wir zwei verschiedene Ansätze zum Zurücksetzen des Index in Pandas-Datenrahmen untersuchen.

Methode 1: Verwendung von reset_index()

Die Methode DataFrame.reset_index() bietet eine einfache Möglichkeit, Indizes zurückzusetzen. Mit dieser Methode können Sie angeben, ob Sie den alten Index als Spalte im Datenrahmen beibehalten oder ganz löschen möchten. Um den alten Index zu löschen, verwenden Sie die folgende Syntax:

df = df.reset_index(drop=True)
Nach dem Login kopieren

Methode 2: Verwendung von reindex()

Die Methode DataFrame.reindex() kann ebenfalls verwendet werden um Indizes zurückzusetzen. Im Gegensatz zu reset_index() wird der alte Index jedoch nicht automatisch gelöscht. Daher müssen Sie es anschließend manuell löschen.

<code class="python">df = df.reindex()
del df['index']</code>
Nach dem Login kopieren

Hinweis: Die Methode reindex() wird seltener zum Zurücksetzen des Index verwendet, da sie ein explizites Löschen des alten Index erfordert.

Fazit

Beim Zurücksetzen von Indizes in Pandas-Datenrahmen ist DataFrame.reset_index() die bevorzugte Methode. Es bietet eine übersichtliche und effiziente Möglichkeit, den alten Index zurückzusetzen und optional zu entfernen. Denken Sie daran, den Parameter drop=True zu verwenden, um den alten Index automatisch zu verwerfen und Verwirrung zu vermeiden.

Das obige ist der detaillierte Inhalt vonSo setzen Sie Indizes in Pandas DataFrames zurück: „reset_index()' vs. „reindex()'?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Neueste Artikel des Autors
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage
Über uns Haftungsausschluss Sitemap
Chinesische PHP-Website:Online-PHP-Schulung für das Gemeinwohl,Helfen Sie PHP-Lernenden, sich schnell weiterzuentwickeln!