Inhaltsverzeichnis
Datenrahmen nach Bereichsbedingung in Pandas zusammenführen
Heim Backend-Entwicklung Python-Tutorial Wie füge ich DataFrames nach Bereichsbedingung in Pandas mithilfe von Numpy Broadcasting zusammen?

Wie füge ich DataFrames nach Bereichsbedingung in Pandas mithilfe von Numpy Broadcasting zusammen?

Oct 31, 2024 am 09:33 AM

How to Merge DataFrames by Range Condition in Pandas Using Numpy Broadcasting?

Datenrahmen nach Bereichsbedingung in Pandas zusammenführen

Im Bereich der Datenanalyse ist das Kombinieren von Daten aus mehreren Quellen eine häufige Aufgabe. Pandas, eine leistungsstarke Python-Bibliothek zur Datenbearbeitung, bietet verschiedene Methoden zum Zusammenführen von Datenrahmen, einschließlich einer Bereichsbedingung. Dieser Artikel befasst sich mit diesem speziellen Szenario und stellt eine effiziente Lösung mithilfe von Numpy Broadcasting vor.

Problembeschreibung

Bei zwei Datenrahmen, A und B, besteht das Ziel darin, eine durchzuführen Innerer Join, bei dem Werte in Datenrahmen A in einen bestimmten Bereich fallen, der in Datenrahmen B definiert ist. Traditionell würde dies mithilfe der SQL-Syntax erreicht werden:

<code class="sql">SELECT *
FROM A, B
WHERE A_value BETWEEN B_low AND B_high</code>
Nach dem Login kopieren

Vorhandene Lösungen

Pandas bietet eine Problemumgehung mithilfe von Dummy-Spalten, dem Zusammenführen in der Dummy-Spalte und dem anschließenden Herausfiltern nicht benötigter Zeilen. Allerdings ist diese Methode rechenintensiv. Alternativ könnte man eine Suchfunktion für jeden A-Wert auf B anwenden, aber dieser Ansatz hat auch Nachteile.

Numpy Broadcasting: Ein pragmatischer Ansatz

Numpy Broadcasting bietet eine elegante und effiziente Lösung. Diese Technik nutzt die Vektorisierung, um Berechnungen für ganze Arrays statt für einzelne Elemente durchzuführen. So erreichen Sie die gewünschte Zusammenführung:

  1. Extrahieren Sie Werte aus den Datenrahmen A und B.
  2. Verwenden Sie Numpy Broadcasting, um eine boolesche Maske zu erstellen:

    • A_value >= B_low
    • A_value <= B_high
  3. Verwenden Sie Numpys np.where, um die Indizes zu finden, bei denen die Maske True ist.
  4. Verketten die entsprechenden Zeilen aus den Datenrahmen A und B basierend auf den identifizierten Indizes.

Dieser Ansatz nutzt Broadcasting, um den Bereichsvergleich für den gesamten A-Datenrahmen durchzuführen, wodurch die Berechnungszeit und -komplexität erheblich reduziert wird.

Beispiel

Betrachten Sie die folgenden Datenrahmen:

<code class="python">A = pd.DataFrame(dict(
    A_id=range(10),
    A_value=range(5, 105, 10)
))
B = pd.DataFrame(dict(
    B_id=range(5),
    B_low=[0, 30, 30, 46, 84],
    B_high=[10, 40, 50, 54, 84]
))</code>
Nach dem Login kopieren

Ausgabe:

   A_id  A_value  B_high  B_id  B_low
0     0        5      10     0      0
1     3       35      40     1     30
2     3       35      50     2     30
3     4       45      50     2     30
Nach dem Login kopieren

Diese Ausgabe zeigt den Erfolg Zusammenführen der Datenrahmen A und B basierend auf der angegebenen Bereichsbedingung.

Zusätzliche Überlegungen

Um eine Linksverknüpfung durchzuführen, schließen Sie die nicht übereinstimmenden Zeilen aus Datenrahmen A in die Ausgabe ein. Dies kann erreicht werden, indem numpys ~np.in1d ​​verwendet wird, um die nicht übereinstimmenden Zeilen zu identifizieren und sie an das Ergebnis anzuhängen.

Zusammenfassend lässt sich sagen, dass Numpy Broadcasting einen robusten und effizienten Ansatz zum Zusammenführen von Datenrahmen basierend auf Bereichsbedingungen bietet. Seine Vektorisierungsfunktionen verbessern die Leistung und machen es zu einer idealen Lösung für große Datensätze.

Das obige ist der detaillierte Inhalt vonWie füge ich DataFrames nach Bereichsbedingung in Pandas mithilfe von Numpy Broadcasting zusammen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1671
14
PHP-Tutorial
1276
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles