


Warum ist BLAS für die Matrix-Matrix-Multiplikation so viel schneller als meine benutzerdefinierte Implementierung?
Enthüllung der Leistungsgeheimnisse von BLAS
Matrix-Matrix-Multiplikationen sind grundlegende Operationen in der linearen Algebra, und ihre Effizienz wirkt sich direkt auf die Geschwindigkeit wissenschaftlicher Arbeiten aus Rechenaufgaben. Neugierig auf die bemerkenswerte Leistung von BLAS (Basic Linear Algebra Subprograms), einer Implementierung dieser Multiplikationen, verglich ein Benutzer es mit seiner eigenen benutzerdefinierten Implementierung und stellte einen erheblichen Unterschied in der Ausführungszeit fest.
Verstehen der Leistung Lücke
Um die Gründe für diese Leistungslücke zu untersuchen, müssen wir die verschiedenen Ebenen von BLAS berücksichtigen:
- Ebene 1: Vektoroperationen, die Profitieren Sie von der Vektorisierung durch SIMD (Single Instruction Multiple Data).
- Ebene 2: Matrix-Vektoroperationen, die Parallelität in Multiprozessorarchitekturen mit gemeinsam genutztem Speicher ausnutzen können.
- Ebene 3:Matrix-Matrix-Operationen, die eine enorme Anzahl von Operationen mit einer begrenzten Datenmenge ausführen.
Funktionen der Ebene 3, wie die Matrix-Matrix-Multiplikation, reagieren besonders empfindlich auf die Cache-Hierarchie Optimierung. Durch die Reduzierung der Datenbewegung zwischen Cache-Ebenen verbessern Cache-optimierte Implementierungen die Leistung erheblich.
Faktoren, die die BLAS-Leistung verbessern
Neben der Cache-Optimierung tragen auch andere Faktoren zur überlegenen Leistung von BLAS bei:
- Optimierte Compiler: Compiler spielen zwar eine Rolle, sind aber nicht der Hauptgrund für die Effizienz von BLAS.
- Effiziente Algorithmen: BLAS Implementierungen verwenden typischerweise etablierte Matrixmultiplikationsalgorithmen, wie zum Beispiel den Standard-Triple-Loop-Ansatz. Algorithmen wie der Strassen-Algorithmus oder der Coppersmith-Winograd-Algorithmus werden in BLAS aufgrund ihrer numerischen Instabilität oder des hohen Rechenaufwands für große Matrizen im Allgemeinen nicht verwendet.
Hochmodernes BLAS Implementierungen
Moderne BLAS-Implementierungen wie BLIS veranschaulichen die neuesten Fortschritte bei der Leistungsoptimierung. BLIS bietet ein vollständig optimiertes Matrix-Matrix-Produkt, das sich durch außergewöhnliche Geschwindigkeit und Skalierbarkeit auszeichnet.
Durch das Verständnis der komplexen Architektur von BLAS kann der Benutzer die Herausforderungen und Komplexitäten erkennen, denen er bei der Beschleunigung von Matrix-Matrix-Multiplikationen gegenübersteht. Die Kombination aus Cache-Optimierung, effizienten Algorithmen und fortlaufender Forschung stellt sicher, dass BLAS der Eckpfeiler des wissenschaftlichen Hochleistungsrechnens bleibt.
Das obige ist der detaillierte Inhalt vonWarum ist BLAS für die Matrix-Matrix-Multiplikation so viel schneller als meine benutzerdefinierte Implementierung?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

Artikel erörtert den effektiven Einsatz von RValue -Referenzen in C für Bewegungssemantik, perfekte Weiterleitung und Ressourcenmanagement, wobei Best Practices und Leistungsverbesserungen hervorgehoben werden. (159 Charaktere)

C 20 -Bereiche verbessern die Datenmanipulation mit Ausdruckskraft, Komposition und Effizienz. Sie vereinfachen komplexe Transformationen und integrieren sich in vorhandene Codebasen, um eine bessere Leistung und Wartbarkeit zu erhalten.

C -Sprachfunktionen sind die Grundlage für die Code -Modularisierung und das Programmaufbau. Sie bestehen aus Deklarationen (Funktionsüberschriften) und Definitionen (Funktionskörper). C Sprache verwendet standardmäßig Werte, um Parameter zu übergeben, aber externe Variablen können auch mit dem Adresspass geändert werden. Funktionen können oder haben keinen Rückgabewert, und der Rückgabewerttyp muss mit der Deklaration übereinstimmen. Die Benennung von Funktionen sollte klar und leicht zu verstehen sein und mit Kamel oder Unterstrich die Nomenklatur. Befolgen Sie das Prinzip der einzelnen Verantwortung und behalten Sie die Funktion ein, um die Wartbarkeit und die Lesbarkeit zu verbessern.

In dem Artikel wird die Verwendung von Move Semantics in C erörtert, um die Leistung zu verbessern, indem unnötiges Kopieren vermieden wird. Es umfasst die Implementierung von Bewegungskonstruktoren und Zuordnungsbetreibern unter Verwendung von STD :: MOVE

In dem Artikel wird der dynamische Versand in C, seine Leistungskosten und Optimierungsstrategien erörtert. Es unterstreicht Szenarien, in denen der dynamische Versand die Leistung beeinflusst, und vergleicht sie mit statischer Versand, wobei die Kompromisse zwischen Leistung und Betonung betont werden

Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.
