Heim Backend-Entwicklung Python-Tutorial Werden große Datenstrukturen im Multiprocessing von Python gemeinsam genutzt oder kopiert?

Werden große Datenstrukturen im Multiprocessing von Python gemeinsam genutzt oder kopiert?

Nov 03, 2024 am 08:04 AM

Are Large Data Structures Shared or Copied in Python's Multiprocessing?

Shared Memory in Multiprocessing

Im Multiprocessing-Modul von Python ist die Frage von Bedeutung, ob große Datenstrukturen zwischen Prozessen gemeinsam genutzt oder kopiert werden.

Ursprüngliches Anliegen

Beim Erstellen mehrerer Prozesse mit multiprocessing.Process und der Übergabe großer Listen als Argumente besteht die Sorge darin, ob diese Listen für jeden Prozess kopiert oder zwischen ihnen gemeinsam genutzt werden. Wenn jeder Prozess eine Kopie erstellt, könnte dies die Speichernutzung erheblich erhöhen.

Copy-on-Write

Linux verwendet einen Copy-on-Write-Ansatz, was Folgendes impliziert Daten werden erst dann physisch kopiert, wenn sie geändert werden. Dies deutet darauf hin, dass die Listen nicht für jeden Unterprozess dupliziert würden.

Referenzzählung

Der Zugriff auf ein Objekt aktualisiert jedoch dessen Referenzanzahl. Wenn ein Unterprozess auf ein Listenelement zugreift, erhöht sich dessen Referenzanzahl. Daher ist unklar, ob das gesamte Objekt (die Liste) kopiert würde.

Überwachung der Speichernutzung

Beobachtungen deuten darauf hin, dass tatsächlich ganze Objekte kopiert werden. für jeden Unterprozess dupliziert, möglicherweise aufgrund der Referenzzählung. Dies ist problematisch, wenn die Listen nicht geändert werden können und ihre Referenzanzahl immer positiv ist.

Shared Memory in Python 3.8.0

Python 3.8.0 führt „true“ ein Shared Memory mithilfe des Moduls multiprocessing.shared_memory. Dies ermöglicht die explizite Erstellung von Shared-Memory-Objekten, auf die von mehreren Prozessen aus ohne Kopieren zugegriffen werden kann.

Zusammenfassend lässt sich sagen, dass der Copy-on-Write-Ansatz in Linux die Wahrscheinlichkeit des Kopierens großer Datenstrukturen verringert, die Referenzzählung jedoch zum tatsächlichen Kopieren führen. Die Verwendung von „echtem“ gemeinsam genutztem Speicher in Python 3.8.0 löst dieses Problem, indem ein Mechanismus zum Erstellen explizit gemeinsam genutzter Objekte bereitgestellt wird.

Das obige ist der detaillierte Inhalt vonWerden große Datenstrukturen im Multiprocessing von Python gemeinsam genutzt oder kopiert?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1658
14
PHP-Tutorial
1257
29
C#-Tutorial
1231
24
Python vs. C: Anwendungen und Anwendungsfälle verglichen Python vs. C: Anwendungen und Anwendungsfälle verglichen Apr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Wie viel Python können Sie in 2 Stunden lernen? Wie viel Python können Sie in 2 Stunden lernen? Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python: Erforschen der primären Anwendungen Python: Erforschen der primären Anwendungen Apr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

See all articles