Inhaltsverzeichnis
Pandas-Datenrahmen mit fehlenden Werten in NumPy-Array konvertieren
Problem
Lösung mit df.to_numpy()
Datentypen beibehalten
Heim Backend-Entwicklung Python-Tutorial Wie konvertiere ich einen Pandas-DataFrame mit fehlenden Werten in ein NumPy-Array, das NaN beibehält?

Wie konvertiere ich einen Pandas-DataFrame mit fehlenden Werten in ein NumPy-Array, das NaN beibehält?

Nov 05, 2024 am 02:27 AM

How to Convert a Pandas DataFrame with Missing Values to a NumPy Array Preserving NaN?

Pandas-Datenrahmen mit fehlenden Werten in NumPy-Array konvertieren

Problem

Konvertieren Sie einen Pandas-Datenrahmen mit fehlenden Werten in ein NumPy-Array und behalten Sie dabei die fehlenden Werte bei als np.nan. Betrachten Sie den folgenden Datenrahmen:

<code class="python">index = [1, 2, 3, 4, 5, 6, 7]
a = [np.nan, np.nan, np.nan, 0.1, 0.1, 0.1, 0.1]
b = [0.2, np.nan, 0.2, 0.2, 0.2, np.nan, np.nan]
c = [np.nan, 0.5, 0.5, np.nan, 0.5, 0.5, np.nan]
df = pd.DataFrame({'A': a, 'B': b, 'C': c}, index=index)
df = df.rename_axis('ID')

print(df)</code>
Nach dem Login kopieren

Ausgabe:

      A    B    C
ID
1   NaN  0.2  NaN
2   NaN  NaN  0.5
3   NaN  0.2  0.5
4   0.1  0.2  NaN
5   0.1  0.2  0.5
6   0.1  NaN  0.5
7   0.1  NaN  NaN
Nach dem Login kopieren

Lösung mit df.to_numpy()

Verwenden Sie die Methode to_numpy(), um den Datenrahmen in a zu konvertieren NumPy-Array mit fehlenden Werten, dargestellt als np.nan:

<code class="python">import numpy as np
import pandas as pd

np_array = df.to_numpy()

print(np_array)</code>
Nach dem Login kopieren

Ausgabe:

[[ nan  0.2  nan]
 [ nan  nan  0.5]
 [ nan  0.2  0.5]
 [ 0.1  0.2  nan]
 [ 0.1  0.2  0.5]
 [ 0.1  nan  0.5]
 [ 0.1  nan  nan]]
Nach dem Login kopieren

Datentypen beibehalten

Wenn Sie die Datentypen im resultierenden Array beibehalten müssen, verwenden Sie DataFrame.to_records (), um eine NumPy-Struktur zu erstellen Array:

<code class="python">import numpy as np
import pandas as pd

structured_array = df.to_records()

print(structured_array)</code>
Nach dem Login kopieren

Ausgabe:

rec.array([('a', 1, 4, 7), ('b', 2, 5, 8), ('c', 3, 6, 9)],
          dtype=[('ID', 'O'), ('A', '&lt;i8'), ('B', '&lt;i8'), ('B', '&lt;i8')])
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWie konvertiere ich einen Pandas-DataFrame mit fehlenden Werten in ein NumPy-Array, das NaN beibehält?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße Artikel -Tags

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Mar 10, 2025 pm 06:54 PM

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

Bildfilterung in Python Bildfilterung in Python Mar 03, 2025 am 09:44 AM

Bildfilterung in Python

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden Mar 05, 2025 am 09:58 AM

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

Wie man mit PDF -Dokumenten mit Python arbeitet Wie man mit PDF -Dokumenten mit Python arbeitet Mar 02, 2025 am 09:54 AM

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Mar 02, 2025 am 10:10 AM

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Mar 10, 2025 pm 06:52 PM

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?

Serialisierung und Deserialisierung von Python -Objekten: Teil 1 Serialisierung und Deserialisierung von Python -Objekten: Teil 1 Mar 08, 2025 am 09:39 AM

Serialisierung und Deserialisierung von Python -Objekten: Teil 1

So implementieren Sie Ihre eigene Datenstruktur in Python So implementieren Sie Ihre eigene Datenstruktur in Python Mar 03, 2025 am 09:28 AM

So implementieren Sie Ihre eigene Datenstruktur in Python

See all articles