Heim Backend-Entwicklung Python-Tutorial Der Einsatz von Open-Source-KI-Modellen in der Entwicklung

Der Einsatz von Open-Source-KI-Modellen in der Entwicklung

Nov 07, 2024 am 06:35 AM

El uso de los modelos de IA open source en el desarrollo

Im letzten Jahr sind zahlreiche Tools mit künstlicher Intelligenz aufgetaucht, die das Leben der Benutzer einfacher machen sollen, von der Bildgenerierung über Chatbots bis hin zu Tools, die gigantisch und professionell arbeiten Prozesse.

Ich habe viele dieser Tools erforscht, gelernt und getestet, von ChatGPT über Gemini bis hin zu Dall-E oder Midjourney. Sie funktionieren alle sehr gut, aber wenn ich meine Anwendungen mit diesen Tools skalieren möchte, stelle ich fest, dass sie keins haben kostenlose oder offene alternative Quelle.

Das hat mich dazu gebracht, meine Forschung einen Schritt weiter voranzutreiben, und ich bin auf stabile Diffusions-UI (Bildgenerierung, https://github.com/AUTOMATIC1111/stable-diffusion-webui) gestoßen und mit * ollama *(Chatbot, https://ollama.com/), beides sind Open-Source-Tools, mit denen Sie einen Dienst als API ausführen können, um ihn von jeder unserer Anwendungen aus zu nutzen. Damit bin ich angekommen Manchmal gehe ich mit Open-Source-Alternativen weiter, aber damit dies funktioniert, muss ich diese Tools laufen lassen, damit sie von unseren Anwendungen genutzt werden können.

Um zu verstehen, wie wir dies in unsere Anwendungen integrieren können, ist es wichtig zu verstehen, wie diese Tools funktionieren. Im Wesentlichen verwenden sie Dateien mit der Erweiterung „Safetensors“, bei denen es sich um LLM- oder große Sprachmodelle handelt, wobei diese Modelle auf ihre Leistung trainiert werden verschiedene Funktionen entsprechend den Bedürfnissen der Person, die es trainiert (Beispiel: Bildgenerierung, Übersetzung, Codeentwicklung, Chatbot usw.).

Wenn wir ein wenig über die LLM-Modelle und die „Safetensors“-Dateien wissen, stellen wir uns die folgende Frage: Wie verwende ich diese Dateien in meinen Anwendungen? Und hier kommt HugginFace ins Spiel, eine Website/Datenbank für Open-Source-künstliche Intelligenz Modelle, und sie haben ihre eigene Bibliothek für Python mit zwei äußerst nützlichen Komponenten für das erstellt, was wir wollen: „Transformer“ und „Diffusoren“.

*Transformers *(https://huggingface.co/docs/transformers/index) ist die Komponente, die es uns ermöglicht, jedes spezielle Textmodell zu nutzen, zum Beispiel die Konvertierung von Audio in Text oder umgekehrt, Chatbox als Meta-Flamme, unter anderem.

Transformatoren importieren

import torch

model_id = "meta-llama/Llama-3.1-8B"

pipeline = transformers.pipeline(
    "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)

pipeline("Hey how are you doing today?")
Nach dem Login kopieren

Diffusoren (https://huggingface.co/docs/diffusers/index) ist die Komponente, die es uns ermöglicht, jedes auf die Bilderzeugung spezialisierte Modell zu nutzen, wie z. B. stabile Diffusion.

from diffusers import AutoPipelineForText2Image
import torch

pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")

prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe."

image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
Nach dem Login kopieren

Dieser Prozess ist als LLM-Modellinferenz bekannt, und von hier aus können Sie auf der Grundlage dieser Informationen beginnen, künstliche Intelligenz in Ihren verschiedenen Anwendungen mit Python anzuwenden.

Es sollte beachtet werden, dass ich auch versucht habe, Modellinferenz mit einer anderen Sprache wie NodeJS zu verwenden, und die Wahrheit ist, dass es nicht so gut funktioniert wie mit Python, aber es ist wichtig zu erwähnen, dass für LLM leistungsstarke Hardware erforderlich ist Modellinferenz, sodass Sie das, was Sie durch die Verwendung der ChatGPT- oder Gemini-APIs sparen können, für den Kauf geeigneter Hardware ausgeben können.

Dies ist mein erster Artikel. Ich hoffe, dass mein Weg zur Verwendung von LLM-Modellen in der Softwareentwicklung Ihnen hilft, Schritte auf diesem Weg zu überspringen.

Das obige ist der detaillierte Inhalt vonDer Einsatz von Open-Source-KI-Modellen in der Entwicklung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1675
14
PHP-Tutorial
1278
29
C#-Tutorial
1257
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles