Heim Web-Frontend js-Tutorial Evaluierung der Medical Retrieval-Augmented Generation (RAG) mit NVIDIA AI Endpoints und Ragas

Evaluierung der Medical Retrieval-Augmented Generation (RAG) mit NVIDIA AI Endpoints und Ragas

Nov 09, 2024 am 03:03 AM

Evaluating Medical Retrieval-Augmented Generation (RAG) with NVIDIA AI Endpoints and Ragas

Im Bereich der Medizin ist die Einbeziehung fortschrittlicher Technologien von entscheidender Bedeutung, um die Patientenversorgung zu verbessern und Forschungsmethoden zu verbessern. Retrieval-Augmented Generation (RAG) ist eine dieser bahnbrechenden Innovationen, die die Leistungsfähigkeit großer Sprachmodelle (LLMs) mit externem Wissensabruf verbindet. Durch das Abrufen relevanter Informationen aus Datenbanken, wissenschaftlicher Literatur und Patientenakten bieten RAG-Systeme eine genauere und kontextbezogenere Antwortgrundlage und beseitigen Einschränkungen wie veraltete Informationen und Halluzinationen, die häufig bei reinen LLMs beobachtet werden.

In diesem Überblick untersuchen wir die wachsende Rolle der RAG im Gesundheitswesen und konzentrieren uns dabei auf ihr Potenzial, Anwendungen wie die Arzneimittelforschung und klinische Studien zu transformieren. Wir werden uns auch mit den Methoden und Werkzeugen befassen, die zur Bewertung der besonderen Anforderungen medizinischer RAG-Systeme erforderlich sind, wie z. B. die LangChain-Endpunkte von NVIDIA und das Ragas-Framework sowie den MACCROBAT-Datensatz, eine Sammlung von Patientenberichten von PubMed Central.


Wichtigste Herausforderungen der medizinischen RAG

  1. Skalierbarkeit: Da medizinische Daten mit einer jährlichen Wachstumsrate von über 35 % wachsen, müssen RAG-Systeme Informationen effizient verwalten und abrufen, ohne die Geschwindigkeit zu beeinträchtigen, insbesondere in Szenarien, in denen sich zeitnahe Erkenntnisse auf die Patientenversorgung auswirken können.

  2. Spezielle Sprach- und Wissensanforderungen: Medizinische RAG-Systeme erfordern eine domänenspezifische Abstimmung, da sich das medizinische Lexikon und die Inhalte erheblich von anderen Bereichen wie Finanzen oder Recht unterscheiden.

  3. Fehlen maßgeschneiderter Bewertungsmetriken: Im Gegensatz zu allgemeinen RAG-Anwendungen fehlen bei medizinischen RAG gut geeignete Benchmarks. Herkömmliche Metriken (wie BLEU oder ROUGE) betonen eher die Textähnlichkeit als die sachliche Genauigkeit, die in medizinischen Kontexten entscheidend ist.

  4. Komponentenweise Bewertung: Eine effektive Bewertung erfordert eine unabhängige Prüfung sowohl der Abruf- als auch der Generierungskomponenten. Der Abruf muss relevante, aktuelle Daten abrufen und die Generierungskomponente muss die Treue zum abgerufenen Inhalt gewährleisten.

Einführung von Ragas für die RAG-Bewertung

Ragas, ein Open-Source-Bewertungsframework, bietet einen automatisierten Ansatz zur Bewertung von RAG-Pipelines. Sein Toolkit konzentriert sich auf Kontextrelevanz, Erinnerung, Treue und Antwortrelevanz. Durch die Verwendung eines LLM-als-Richter-Modells minimiert Ragas den Bedarf an manuell kommentierten Daten und macht den Prozess effizient und kosteneffektiv.

Evaluierungsstrategien für RAG-Systeme

Berücksichtigen Sie für eine solide RAG-Bewertung die folgenden Schritte:

  1. Synthetische Datengenerierung: Generieren Sie Triplettdaten (Frage, Antwort, Kontext) basierend auf den Vektorspeicherdokumenten, um synthetische Testdaten zu erstellen.
  2. Metrikbasierte Bewertung: Bewerten Sie das RAG-System anhand von Metriken wie Präzision und Erinnerung und vergleichen Sie seine Antworten mit den generierten synthetischen Daten als Grundwahrheit.
  3. Bewertung unabhängiger Komponenten: Bewerten Sie für jede Frage die Relevanz des Abrufkontexts und die Antwortgenauigkeit der Generation.

Hier ist eine Beispiel-Pipeline: Wenn Sie eine Frage wie „Was sind typische Blutdruckmessungen bei Herzinsuffizienz“ haben? Das System ruft zunächst den relevanten Kontext ab und bewertet dann, ob die Antwort die Frage genau beantwortet.

Einrichten von RAG mit NVIDIA API und LangChain

Um mitzumachen, erstellen Sie ein NVIDIA-Konto und erhalten Sie einen API-Schlüssel. Installieren Sie die erforderlichen Pakete mit:

pip install langchain
pip install langchain_nvidia_ai_endpoints
pip install ragas
Nach dem Login kopieren

Laden Sie den MACCROBAT-Datensatz herunter, der umfassende Krankenakten bietet, die über LangChain geladen und verarbeitet werden können.

from langchain_community.document_loaders import HuggingFaceDatasetLoader
from datasets import load_dataset

dataset_name = "singh-aditya/MACCROBAT_biomedical_ner"
page_content_column = "full_text"

loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
dataset = loader.load()
Nach dem Login kopieren

Mithilfe von NVIDIA-Endpunkten und LangChain können wir jetzt einen robusten Testsatzgenerator erstellen und synthetische Daten basierend auf dem Datensatz erstellen:

from ragas.testset.generator import TestsetGenerator
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings

critic_llm = ChatNVIDIA(model="meta/llama3.1-8b-instruct")
generator_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")
embeddings = NVIDIAEmbeddings(model="nv-embedqa-e5-v5", truncate="END")

generator = TestsetGenerator.from_langchain(
    generator_llm, critic_llm, embeddings, chunk_size=512
)
testset = generator.generate_with_langchain_docs(dataset, test_size=10)
Nach dem Login kopieren

Bereitstellung und Bewertung der Pipeline

Stellen Sie Ihr RAG-System in einem Vektorspeicher bereit und generieren Sie Beispielfragen aus tatsächlichen medizinischen Berichten:

# Sample questions
["What are typical BP measurements in the case of congestive heart failure?",
 "What can scans reveal in patients with severe acute pain?",
 "Is surgical intervention necessary for liver metastasis?"]
Nach dem Login kopieren

Jede Frage ist mit einem abgerufenen Kontext und einer generierten Ground-Truth-Antwort verknüpft, die dann zur Bewertung der Leistung sowohl der Abruf- als auch der Generierungskomponenten verwendet werden kann.

Benutzerdefinierte Metriken mit Ragas

Medizinische RAG-Systeme benötigen möglicherweise benutzerdefinierte Metriken, um die Abrufgenauigkeit zu bewerten. Beispielsweise könnte eine Metrik bestimmen, ob ein abgerufenes Dokument für eine Suchabfrage relevant genug ist:

from dataclasses import dataclass, field
from ragas.evaluation.metrics import MetricWithLLM, Prompt

RETRIEVAL_PRECISION = Prompt(
    name="retrieval_precision",
    instruction="Is this result relevant enough for the first page of search results? Answer '1' for yes and '0' for no.",
    input_keys=["question", "context"]
)

@dataclass
class RetrievalPrecision(MetricWithLLM):
    name: str = "retrieval_precision"
    evaluation_mode = EvaluationMode.qc
    context_relevancy_prompt: Prompt = field(default_factory=lambda: RETRIEVAL_PRECISION)

# Use this custom metric in evaluation
score = evaluate(dataset["eval"], metrics=[RetrievalPrecision()])
Nach dem Login kopieren

Strukturierte Ausgabe für Präzision und Zuverlässigkeit

Für eine effiziente und zuverlässige Auswertung vereinfacht die strukturierte Ausgabe die Bearbeitung. Strukturieren Sie mit den LangChain-Endpunkten von NVIDIA Ihre LLM-Antwort in vordefinierte Kategorien (z. B. Ja/Nein).

import enum

class Choices(enum.Enum):
    Y = "Y"
    N = "N"

structured_llm = nvidia_llm.with_structured_output(Choices)
structured_llm.invoke("Is this search result relevant to the query?")
Nach dem Login kopieren

Abschluss

RAG verbindet LLMs und den dichten Vektorabruf für hocheffiziente, skalierbare Anwendungen in den Bereichen Medizin, Mehrsprachigkeit und Codegenerierung. Im Gesundheitswesen ist das Potenzial, genaue, kontextbezogene Antworten zu liefern, offensichtlich, doch bei der Bewertung müssen Genauigkeit, Domänenspezifität und Kosteneffizienz Vorrang haben.

Die skizzierte Evaluierungspipeline, die synthetische Testdaten, NVIDIA-Endpunkte und Ragas verwendet, bietet eine robuste Methode, um diesen Anforderungen gerecht zu werden. Für einen tieferen Einblick können Sie Beispiele für generative KI von Ragas und NVIDIA auf GitHub erkunden.

Das obige ist der detaillierte Inhalt vonEvaluierung der Medical Retrieval-Augmented Generation (RAG) mit NVIDIA AI Endpoints und Ragas. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1670
14
PHP-Tutorial
1274
29
C#-Tutorial
1256
24
Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Apr 16, 2025 am 12:12 AM

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Von C/C nach JavaScript: Wie alles funktioniert Von C/C nach JavaScript: Wie alles funktioniert Apr 14, 2025 am 12:05 AM

Die Verschiebung von C/C zu JavaScript erfordert die Anpassung an dynamische Typisierung, Müllsammlung und asynchrone Programmierung. 1) C/C ist eine statisch typisierte Sprache, die eine manuelle Speicherverwaltung erfordert, während JavaScript dynamisch eingegeben und die Müllsammlung automatisch verarbeitet wird. 2) C/C muss in den Maschinencode kompiliert werden, während JavaScript eine interpretierte Sprache ist. 3) JavaScript führt Konzepte wie Verschlüsse, Prototypketten und Versprechen ein, die die Flexibilität und asynchrone Programmierfunktionen verbessern.

JavaScript und das Web: Kernfunktionalität und Anwendungsfälle JavaScript und das Web: Kernfunktionalität und Anwendungsfälle Apr 18, 2025 am 12:19 AM

Zu den Hauptanwendungen von JavaScript in der Webentwicklung gehören die Interaktion der Clients, die Formüberprüfung und die asynchrone Kommunikation. 1) Dynamisches Inhaltsaktualisierung und Benutzerinteraktion durch DOM -Operationen; 2) Die Kundenüberprüfung erfolgt vor dem Einreichung von Daten, um die Benutzererfahrung zu verbessern. 3) Die Aktualisierung der Kommunikation mit dem Server wird durch AJAX -Technologie erreicht.

JavaScript in Aktion: Beispiele und Projekte in realer Welt JavaScript in Aktion: Beispiele und Projekte in realer Welt Apr 19, 2025 am 12:13 AM

Die Anwendung von JavaScript in der realen Welt umfasst Front-End- und Back-End-Entwicklung. 1) Zeigen Sie Front-End-Anwendungen an, indem Sie eine TODO-Listanwendung erstellen, die DOM-Operationen und Ereignisverarbeitung umfasst. 2) Erstellen Sie RESTFUFFUPI über Node.js und express, um Back-End-Anwendungen zu demonstrieren.

Verständnis der JavaScript -Engine: Implementierungsdetails Verständnis der JavaScript -Engine: Implementierungsdetails Apr 17, 2025 am 12:05 AM

Es ist für Entwickler wichtig, zu verstehen, wie die JavaScript -Engine intern funktioniert, da sie effizientere Code schreibt und Leistungs Engpässe und Optimierungsstrategien verstehen kann. 1) Der Workflow der Engine umfasst drei Phasen: Parsen, Kompilieren und Ausführung; 2) Während des Ausführungsprozesses führt die Engine dynamische Optimierung durch, wie z. B. Inline -Cache und versteckte Klassen. 3) Zu Best Practices gehören die Vermeidung globaler Variablen, die Optimierung von Schleifen, die Verwendung von const und lass und die Vermeidung übermäßiger Verwendung von Schließungen.

Python gegen JavaScript: Community, Bibliotheken und Ressourcen Python gegen JavaScript: Community, Bibliotheken und Ressourcen Apr 15, 2025 am 12:16 AM

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Python vs. JavaScript: Entwicklungsumgebungen und Tools Python vs. JavaScript: Entwicklungsumgebungen und Tools Apr 26, 2025 am 12:09 AM

Sowohl Python als auch JavaScripts Entscheidungen in Entwicklungsumgebungen sind wichtig. 1) Die Entwicklungsumgebung von Python umfasst Pycharm, Jupyternotebook und Anaconda, die für Datenwissenschaft und schnelles Prototyping geeignet sind. 2) Die Entwicklungsumgebung von JavaScript umfasst Node.JS, VSCODE und WebPack, die für die Entwicklung von Front-End- und Back-End-Entwicklung geeignet sind. Durch die Auswahl der richtigen Tools nach den Projektbedürfnissen kann die Entwicklung der Entwicklung und die Erfolgsquote der Projekte verbessert werden.

Die Rolle von C/C bei JavaScript -Dolmetschern und Compilern Die Rolle von C/C bei JavaScript -Dolmetschern und Compilern Apr 20, 2025 am 12:01 AM

C und C spielen eine wichtige Rolle in der JavaScript -Engine, die hauptsächlich zur Implementierung von Dolmetschern und JIT -Compilern verwendet wird. 1) C wird verwendet, um JavaScript -Quellcode zu analysieren und einen abstrakten Syntaxbaum zu generieren. 2) C ist für die Generierung und Ausführung von Bytecode verantwortlich. 3) C implementiert den JIT-Compiler, optimiert und kompiliert Hot-Spot-Code zur Laufzeit und verbessert die Ausführungseffizienz von JavaScript erheblich.

See all articles