


Wörterbuch oder Liste: Was ist für eine Nachschlagetabelle mit 10 Millionen Werten effizienter?
Python: List vs. Dict für die Effizienz von Nachschlagetabellen
Beim Erstellen einer Nachschlagetabelle mit einer großen Anzahl von Werten (hier 10 Millionen). In diesem Fall ist die Wahl der geeigneten Datenstruktur sowohl für die Effizienz als auch für die Speicheroptimierung von entscheidender Bedeutung. Die beiden Hauptoptionen sind Listen und Wörterbücher.
Suchgeschwindigkeit
- Liste: Die Suche in einer Liste ist ein linearer Suchvorgang. Das heißt, es durchläuft jedes Element, um den gewünschten Wert zu finden. Dies ist die O(n)-Komplexität, wobei n die Anzahl der Elemente in der Liste ist.
- Wörterbuch: Wörterbuchsuchen nutzen Hashing und liefern eine amortisierte O(1)-Komplexität. Dies bedeutet, dass die Suchzeit unabhängig von der Anzahl der Elemente im Wörterbuch relativ konstant bleibt.
Speichernutzung
Sowohl Wörterbücher als auch Sätze verwenden Hashing für eine effiziente Nutzung Nachschlagen. Diese Hash-Tabellenimplementierung behält jedoch häufig einen Füllgrad von 2/3 bei, was zu Speicherverschwendung führen kann.
In Fällen, in denen nur Sucheffizienz erforderlich ist, können Sätze in Betracht gezogen werden. Sets unterstützen schnellere Suchvorgänge, bieten jedoch nicht die Möglichkeit, Werte zuzuordnen.
Schlussfolgerung
Basierend auf dem bereitgestellten Kontext, in dem die Sucheffizienz Vorrang hat und Werte nicht verknüpft sind Schlüssel ist die optimale Wahl ein Wörterbuch. Die amortisierte Suchkomplexität von O(1) garantiert eine schnelle Suche unabhängig von der Tabellengröße. Wenn jedoch Speicherbeschränkungen ein großes Problem darstellen, könnte die Verwendung einer sortierten Liste mit binärer Suche eine alternative Lösung sein, die O(log n)-Leistung auf Kosten möglicherweise langsamerer Suchzeiten bietet, insbesondere für Zeichenfolgen oder Objekte ohne natürliche Reihenfolge.
Das obige ist der detaillierte Inhalt vonWörterbuch oder Liste: Was ist für eine Nachschlagetabelle mit 10 Millionen Werten effizienter?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
