


Warum ändert das Transponieren eines 1D-NumPy-Arrays seine Form nicht?
NumPy-Arrays transponieren: 1D-Matrixverhalten dekodieren
Beim Umgang mit NumPy-Arrays ist es wichtig, insbesondere das Verhalten der Transponierungsoperation zu verstehen für 1D-Arrays. Das Transponieren eines 1D-Arrays führt entgegen den allgemeinen Erwartungen zu einem anderen 1D-Array.
Verwechslung mit der Transponierungsoperation
Bedenken Sie den folgenden NumPy-Code:
import numpy as np a = np.array([5,4]) print(a) print(a.T)
In diesem Szenario transponiert der Aufruf von a.T das Array nicht, wie man annehmen könnte. Stattdessen wird das Array unverändert zurückgegeben.
1D-Array-Transponierungsverhalten
Der Grund für dieses Verhalten liegt in der grundlegenden Natur von 1D-Arrays in NumPy. Im Gegensatz zu MATLAB unterscheidet NumPy nicht zwischen 1D- und 2D-Arrays. Ein 1D-Array in NumPy ist im Wesentlichen ein 2D-Array mit den Dimensionen (1, n), wobei n die Länge des Arrays darstellt.
Daher werden beim Transponieren eines 1D-Arrays die Elemente einfach entlang einer Achse neu angeordnet, was zu a führt 2D-Array mit den Dimensionen (n, 1). Im gegebenen Beispiel hat die Transponierungsoperation keine sichtbare Auswirkung, da das Array bereits ein (1, 2)-dimensionales Array ist und jede Achsendrehung ein 1D-Array bleiben würde.
Erstellen eines 2D-Arrays für Transposition
Wenn das gewünschte Ergebnis darin besteht, ein 1D-Array in ein 2D-Array zu transponieren, kann man np.newaxis (oder äquivalent None), um eine zusätzliche Dimension zu erstellen.
a = np.array([5,4])[np.newaxis] print(a) print(a.T)
Durch Hinzufügen einer Dimension mit np.newaxis wird das resultierende Array zu einem (1, 2)-dimensionalen Array, was eine ordnungsgemäße Transposition ermöglicht.
Zusätzliche Erkenntnisse
In den meisten praktischen Szenarien ist eine explizite Transposition eines 1D-Arrays jedoch nicht erforderlich. NumPy überträgt 1D-Arrays während der Berechnungen automatisch in höhere Dimensionen und macht so für den Benutzer transparent, ob mit Zeilen- oder Spaltenvektoren gearbeitet wird.
Das obige ist der detaillierte Inhalt vonWarum ändert das Transponieren eines 1D-NumPy-Arrays seine Form nicht?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.
