Heim Backend-Entwicklung Python-Tutorial Scrape but Validate: Daten-Scraping mit Pydantic Validation

Scrape but Validate: Daten-Scraping mit Pydantic Validation

Nov 22, 2024 am 07:40 AM

Hinweis: Keine Ausgabe von chatGPT/LLM

Data Scraping ist ein Prozess zum Sammeln von Daten aus öffentlichen Webquellen und erfolgt meist mithilfe von Skripten auf automatisierte Weise. Aufgrund der Automatisierung weisen die erfassten Daten häufig Fehler auf und müssen für die Verwendung herausgefiltert und bereinigt werden. Es ist jedoch besser, wenn die gescrapten Daten während des Scrapings validiert werden können.

In Anbetracht der Datenvalidierungsanforderung verfügen die meisten Scraping-Frameworks wie Scrapy über integrierte Muster, die zur Datenvalidierung verwendet werden können. Allerdings verwenden wir während des Daten-Scraping-Prozesses oft nur Allzweckmodule wie requests und beautifulsoup zum Scraping. In einem solchen Fall ist es schwierig, die gesammelten Daten zu validieren. In diesem Blogbeitrag wird daher ein einfacher Ansatz für das Daten-Scraping mit Validierung mithilfe von Pydantic erläutert.
https://docs.pydantic.dev/latest/
Pydantic ist ein Python-Modul zur Datenvalidierung. Es ist auch das Rückgrat des beliebten API-Moduls FastAPI. Wie Pydantic gibt es auch andere Python-Module, die zur Validierung beim Daten-Scraping verwendet werden können. Dieser Blog befasst sich jedoch mit Pydantic und hier finden Sie Links zu alternativen Paketen (Sie können als Lernübung versuchen, Pydantic durch ein anderes Modul zu ersetzen)

  • Cerberus ist eine leichte und erweiterbare Datenvalidierungsbibliothek für Python. https://pypi.org/project/Cerberus/

Schabeplan:

In diesem Blog werden wir Zitate von der Zitatseite entfernen.
Wir werden Anfragen und beautifulsoup verwenden, um die Daten zu erhalten. Wir werden eine pydantische Datenklasse erstellen, um alle abgekratzten Daten zu validieren. Speichern Sie die gefilterten und validierten Daten in einer json-Datei.

Zur besseren Anordnung und zum besseren Verständnis ist jeder Schritt als Python-Methode implementiert, die im Hauptabschnitt verwendet werden kann.

Grundlegender Import

import requests # for web request
from bs4 import BeautifulSoup # cleaning html content

# pydantic for validation

from pydantic import BaseModel, field_validator, ValidationError

import json

Nach dem Login kopieren
Nach dem Login kopieren

1. Zielwebsite und Einholen von Angeboten

Wir verwenden (http://quotes.toscrape.com/), um die Anführungszeichen zu kratzen. Jedes Zitat verfügt über drei Felder: quote_text, Autor und Tags. Zum Beispiel:

Scrape but Validate: Data scraping with Pydantic Validation

Die folgende Methode ist ein allgemeines Skript zum Abrufen von HTML-Inhalten für eine bestimmte URL.

def get_html_content(page_url: str) -> str:
    page_content =""
    # Send a GET request to the website
    response = requests.get(url)
    # Check if the request was successful (status code 200)
    if response.status_code == 200:
        page_content = response.content
    else:
        page_content = f'Failed to retrieve the webpage. Status code: {response.status_code}'
    return page_content

Nach dem Login kopieren
Nach dem Login kopieren

2. Holen Sie sich die Angebotsdaten aus dem Scraping

Wir werden „Requests“ und „Beautifulsoup“ verwenden, um die Daten aus den angegebenen URLs zu extrahieren. Der Prozess ist in drei Teile unterteilt: 1) Holen Sie sich den HTML-Inhalt aus dem Web, 2) Extrahieren Sie die gewünschten HTML-Tags für jedes Zielfeld, 3) Holen Sie sich die Werte aus jedem Tag

import requests # for web request
from bs4 import BeautifulSoup # cleaning html content

# pydantic for validation

from pydantic import BaseModel, field_validator, ValidationError

import json

Nach dem Login kopieren
Nach dem Login kopieren
def get_html_content(page_url: str) -> str:
    page_content =""
    # Send a GET request to the website
    response = requests.get(url)
    # Check if the request was successful (status code 200)
    if response.status_code == 200:
        page_content = response.content
    else:
        page_content = f'Failed to retrieve the webpage. Status code: {response.status_code}'
    return page_content

Nach dem Login kopieren
Nach dem Login kopieren

Das folgende Skript ruft den Datenpunkt aus dem Div jedes Zitats ab.

def get_tags(tags):
    tags =[tag.get_text() for tag in tags.find_all('a')]
    return tags

Nach dem Login kopieren

3. Erstellen Sie eine Pydantic-Datenklasse und validieren Sie die Daten für jedes Angebot

Erstellen Sie gemäß den einzelnen Feldern des Angebots eine pydantische Klasse und verwenden Sie dieselbe Klasse für die Datenvalidierung während des Daten-Scrapings.

Das pydantische Modell Zitat

Unten ist die Quote-Klasse aufgeführt, die von BaseModel erweitert wurde und über drei Felder wie „quote_text“, „author“ und „tags“ verfügt. Von diesen dreien sind „quote_text“ und „author“ Zeichenfolgentypen (str) und „tags“ ein Listentyp.

Wir haben zwei Validierungsmethoden (mit Dekoratoren):

1) tags_more_than_two (): Prüft, ob mehr als zwei Tags vorhanden sein müssen. (Es ist nur ein Beispiel, Sie können hier jede beliebige Regel haben)

2.) check_quote_text(): Diese Methode entfernt „“ aus dem Zitat und testet den Text.

def get_quotes_div(html_content:str) -> str :    
    # Parse the page content with BeautifulSoup
    soup = BeautifulSoup(html_content, 'html.parser')

    # Find all the quotes on the page
    quotes = soup.find_all('div', class_='quote')

    return quotes
Nach dem Login kopieren

Daten abrufen und validieren

Die Datenvalidierung ist mit Pydantic sehr einfach. Übergeben Sie beispielsweise im folgenden Code abgekratzte Daten an die Pydantic-Klasse Quote.

    # Loop through each quote and extract the text and author
    for quote in quotes_div:
        quote_text = quote.find('span', class_='text').get_text()
        author = quote.find('small', class_='author').get_text()
        tags = get_tags(quote.find('div', class_='tags'))

        # yied data to a dictonary 
        quote_temp ={'quote_text': quote_text,
                'author': author,
                'tags':tags
        }
Nach dem Login kopieren
class Quote(BaseModel):
    quote_text:str
    author:str
    tags: list

    @field_validator('tags')
    @classmethod
    def tags_more_than_two(cls, tags_list:list) -> list:
        if len(tags_list) <=2:
            raise ValueError("There should be more than two tags.")
        return tags_list

    @field_validator('quote_text')
    @classmethod    
    def check_quote_text(cls, quote_text:str) -> str:
        return quote_text.removeprefix('“').removesuffix('”')
Nach dem Login kopieren

4. Speichern Sie die Daten

Sobald die Daten validiert sind, werden sie in einer JSON-Datei gespeichert. (Es wurde eine Allzweckmethode geschrieben, die das Python-Wörterbuch in eine JSON-Datei konvertiert)

quote_data = Quote(**quote_temp)
Nach dem Login kopieren

Alles zusammenfügen

Nachdem Sie jeden Teil des Scrapings verstanden haben, können Sie nun alles zusammenfügen und das Scraping zur Datenerfassung ausführen.

def get_quotes_data(quotes_div: list) -> list:
    quotes_data = []

    # Loop through each quote and extract the text and author
    for quote in quotes_div:
        quote_text = quote.find('span', class_='text').get_text()
        author = quote.find('small', class_='author').get_text()
        tags = get_tags(quote.find('div', class_='tags'))

        # yied data to a dictonary 
        quote_temp ={'quote_text': quote_text,
                'author': author,
                'tags':tags
        }

        # validate data with Pydantic model
        try:
            quote_data = Quote(**quote_temp)            
            quotes_data.append(quote_data.model_dump())            
        except  ValidationError as e:
            print(e.json())
    return quotes_data
Nach dem Login kopieren

Hinweis: Eine Überarbeitung ist geplant. Teilen Sie mir Ihre Idee oder Ihren Vorschlag zur Aufnahme in die überarbeitete Version mit.

Links und Ressourcen:

  • https://pypi.org/project/parsel/

  • https://docs.pydantic.dev/latest/

Das obige ist der detaillierte Inhalt vonScrape but Validate: Daten-Scraping mit Pydantic Validation. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

See all articles