Findet diese binäre Python-Suchfunktion das Element?
Binäre Suche (Bisektion) in Python
Die Feststellung, ob ein Element in einer sortierten Liste oder einem Tupel vorhanden ist, ist eine häufige Aufgabe in der Programmierung. Während Python das Modul „bisect“ für die binäre Suche bereitstellt, geben seine Funktionen „bisect_left“ und „bisect_right“ eine Position zurück, auch wenn das Element nicht gefunden wird. Um diesem Bedarf gerecht zu werden, wird eine Python-Implementierung der binären Suche eingeführt, die explizit einen booleschen Wert zurückgibt.
Vorgeschlagene Lösung
Die Funktion „binary_search“ verwendet eine sortierte Liste „a“. , ein zu suchendes Element „x“ und optionale Start- und Endpositionen „lo“ und „hi“ für den Suchbereich. Es verwendet die Funktion bisect_left aus dem Modul bisect, um den Einfügepunkt „pos“ für „x“ in der Liste „a“ zu lokalisieren.
Wenn „pos“ kleiner als „hi“ ist und das Element bei „pos ' gleich 'x' ist, dann wird 'x' gefunden und 'pos' wird als Index seiner Position in der Liste zurückgegeben. Wenn „pos“ jedoch das Ende der Liste erreicht (d. h. „pos“ entspricht „hi“), wird „x“ nicht gefunden und die Funktion gibt -1 zurück.
from bisect import bisect_left def binary_search(a, x, lo=0, hi=None): if hi is None: hi = len(a) pos = bisect_left(a, x, lo, hi) # find insertion position return pos if pos != hi and a[pos] == x else -1 # don't walk off the end
Beispielverwendung
Wenn beispielsweise eine sortierte Liste „a“ und ein zu suchendes Element „x“ vorhanden sind, kann die Funktion „binary_search“ verwendet werden als folgt:
result = binary_search(a, x) if result == -1: print("Element not found") else: print("Element found at index", result)
Diese prägnante Python-Funktion bietet eine praktische Möglichkeit, eine binäre Suche zur Überprüfung der Existenz von Elementen in sortierten Listen durchzuführen und dabei die Einfachheit und Effizienz der binären Suche beizubehalten.
Das obige ist der detaillierte Inhalt vonFindet diese binäre Python-Suchfunktion das Element?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.
