


Wie kann ich mit Python effizient sauberen Text aus HTML-Dateien extrahieren?
Text aus HTML-Dateien mit Python extrahieren: Eine umfassende Anleitung
Einführung
Text extrahieren aus HTML-Dateien können für verschiedene Datenverarbeitungs- und Analyseaufgaben unerlässlich sein. Während reguläre Ausdrücke für einfache HTML-Strukturen machbar sind, können sie bei schlecht geformtem Code Probleme bereiten. Dieser Artikel untersucht die robuste Alternative – Beautiful Soup – und bietet eine praktische Lösung, die unerwünschtes JavaScript effektiv entfernt und HTML-Entitäten interpretiert.
Verwendung von Beautiful Soup
Zum Extrahieren von Text mit Beautiful Soup, folgen Sie diesen Schritten:
- Importieren Sie die BeautifulSoup-Bibliothek.
- Öffnen Sie den HTML-Code Datei mit urlopen().
- Erstellen Sie ein BeautifulSoup-Objekt mit BeautifulSoup(html, Features="html.parser").
- Entfernen Sie unerwünschte Elemente (z. B. Skripte und Stile) mit for script in Suppe (["script", "style"]): script.extract().
- Extrahieren Sie den Text mit supple.get_text().
- Teilen Sie den Text in Zeilen auf und entfernen Sie Leerraum mit Zeilen = (line.strip() für Zeile in text.splitlines()).
- Trennen Sie mehrere Überschriften mit chunks = (phrase.strip() für Zeile in Zeilen für Phrase in line.split(" ")).
- Leerzeilen mit text = entfernen 'n'.join(Chunk für Chunk in Chunks, wenn Chunk).
Codebeispiel
Hier ist ein vollständiges Codebeispiel:
from urllib.request import urlopen from bs4 import BeautifulSoup url = "http://news.bbc.co.uk/2/hi/health/2284783.stm" html = urlopen(url).read() soup = BeautifulSoup(html, features="html.parser") for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) print(text)
Zusätzlich Optionen
- html2text: Eine alternative Bibliothek, die HTML-Entitäten verarbeitet und JavaScript ignoriert. Es erzeugt jedoch Markdown anstelle von einfachem Text.
- lxml: Eine leistungsstarke XML- und HTML-Parser-Bibliothek, die auch Text extrahieren kann, nachdem Tags entfernt wurden.
Fazit
Diese Anleitung bietet eine umfassende Lösung zum Extrahieren von Text aus HTML-Dateien mit BeautifulSoup. Durch das Entfernen unerwünschter Elemente und die Interpretation von HTML-Entitäten wird effektiv eine reine Textausgabe zur weiteren Verarbeitung und Analyse generiert.
Das obige ist der detaillierte Inhalt vonWie kann ich mit Python effizient sauberen Text aus HTML-Dateien extrahieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
