Heim Backend-Entwicklung Python-Tutorial Was sind die besten Python-Bibliotheken für Data Science?

Was sind die besten Python-Bibliotheken für Data Science?

Nov 29, 2024 am 08:56 AM

What Are the Top Python Libraries for Data Science

Einführung
Anfängern in der Datenwissenschaft kann das Verständnis der besten Python-Bibliotheken zu einem guten Start verhelfen. Top-Python-Schulung in Bangalore Jede Bibliothek hat eine bestimmte Rolle, die es einfacher macht, Aufgaben wie Datenmanipulation, Visualisierung, statistische Analyse und maschinelles Lernen zu verwalten. Hier ist ein einführender Blick auf die 10 besten Python-Bibliotheken, die jeder Data-Science-Anfänger kennen sollte:

  1. NumPy Einführung: NumPy ist die Grundlage der Datenwissenschaft in Python und bietet Unterstützung für den Umgang mit großen Datenfeldern und -matrizen sowie die Durchführung mathematischer Operationen darauf. Verwendung: Unverzichtbar für numerische Berechnungen und die Arbeit mit mehrdimensionalen Datenstrukturen.
  2. Pandas Einführung: Pandas wird zur Datenmanipulation und -analyse verwendet und erleichtert die Handhabung und Transformation strukturierter Daten wie Tabellen oder Zeitreihen. Verwendung: Es eignet sich perfekt zum Laden, Bereinigen und Analysieren von Datensätzen, oft der erste Schritt in jedem Data-Science-Projekt.
  3. Matplotlib Einführung: Matplotlib ist eine grundlegende Bibliothek zum Erstellen grundlegender Visualisierungen, mit der Sie Diagramme wie Liniendiagramme, Balkendiagramme, Histogramme und Streudiagramme erstellen können. Top Python Training Institute Verwendung: Ideal für die Visualisierung von Datentrends und -ergebnissen, was es zu einem unverzichtbaren Werkzeug für die Datenpräsentation macht.
  4. Seaborn Einführung: Seaborn basiert auf Matplotlib und vereinfacht die Erstellung optisch ansprechender statistischer Diagramme und komplexer Visualisierungen mit nur wenigen Codezeilen. Verwendung: Hervorragend geeignet zum Erstellen von Heatmaps, kategorialen Diagrammen und detaillierteren statistischen Visualisierungen.
  5. SciPy Einführung: SciPy baut auf NumPy auf und bietet zusätzliche Funktionen für wissenschaftliches und technisches Rechnen, wie Statistik, Optimierung und Signalverarbeitung. Top-Python-Training in Bangalore Verwendung: Nützlich, wenn Sie erweiterte mathematische Funktionen benötigen, die über das hinausgehen, was NumPy bietet.
  6. scikit-learn Einführung: Scikit-learn ist eine der beliebtesten Bibliotheken für maschinelles Lernen in Python und bietet einfache Tools zur Implementierung von Algorithmen wie Regression, Klassifizierung und Clustering. Verwendung: Perfekt für Anfänger, um mit dem Aufbau und der Evaluierung grundlegender Modelle für maschinelles Lernen zu beginnen.
  7. TensorFlow Einleitung: TensorFlow wurde von Google entwickelt und ist eine leistungsstarke Bibliothek zum Erstellen von Deep-Learning-Modellen, insbesondere für Aufgaben mit neuronalen Netzen. Top-Python-Training in Bangalore Verwendung: Ideal für Projekte in den Bereichen Computer Vision, Verarbeitung natürlicher Sprache und anderen Bereichen, die komplexe Modelle erfordern.
  8. Keras Einführung: Keras bietet eine High-Level-Schnittstelle zum Aufbau neuronaler Netze und läuft auf TensorFlow. Aufgrund seiner Einfachheit ist es eine beliebte Wahl für Anfänger im Deep Learning. Verwendung: Nützlich zum schnellen Erstellen und Experimentieren mit Deep-Learning-Modellen, ohne dass tiefe technische Kenntnisse erforderlich sind.
  9. Statistikmodelle Einführung: Statsmodels bietet Tools für die statistische Modellierung, mit denen Sie komplexe statistische Tests und Analysen durchführen können. Verwendung: Ideal für diejenigen, die für ihre datenwissenschaftliche Arbeit detaillierte statistische Tests wie Hypothesentests und Zeitreihenanalysen benötigen.
  10. Plotly Einführung: Plotly ist eine Datenvisualisierungsbibliothek, die interaktive, webbasierte Visualisierungen erstellt, die einfach geteilt und eingebettet werden können. Verwendung: Hervorragend geeignet für interaktive Visualisierungen und Dashboards, was es zu einer großartigen Wahl für die Präsentation von Ergebnissen für andere macht. Wie diese Bibliotheken zusammenpassen Datenverarbeitung: NumPy und Pandas sind für die Verarbeitung und Aufbereitung von Daten unerlässlich. Visualisierung: Matplotlib, Seaborn und Plotly eignen sich hervorragend zur Visualisierung von Datenerkenntnissen. Statistische Analyse: SciPy und Statsmodels stellen die für die Analyse erforderlichen mathematischen und statistischen Funktionen bereit. Maschinelles Lernen und Deep Learning: Scikit-learn, TensorFlow und Keras bieten Tools zum Erstellen von Modellen und zur Vorhersage von Ergebnissen. Zusammen bilden diese Bibliotheken ein leistungsstarkes Toolkit, das den gesamten Data-Science-Workflow abdeckt, von der Datenvorverarbeitung über die Visualisierung bis hin zum maschinellen Lernen. Jede Bibliothek verfügt über eine einsteigerfreundliche Oberfläche, sodass Sie loslegen können, ohne von komplexem Code überwältigt zu werden. Top-Python-Training in Bangalore Abschluss Im Jahr 2024 wird Python wichtiger denn je für den beruflichen Aufstieg in vielen verschiedenen Branchen sein. Wie wir gesehen haben, gibt es mehrere spannende Karrierewege, die Sie mit Python einschlagen können, und jeder bietet einzigartige Möglichkeiten, mit Daten zu arbeiten und wirkungsvolle Entscheidungen zu treffen. Bei NearLearn verstehen wir die Macht von Daten und sind bestrebt, erstklassige Schulungslösungen bereitzustellen, die es Fachleuten ermöglichen, diese Macht effektiv zu nutzen. Eines der transformativsten Tools, mit denen wir Einzelpersonen schulen, ist Python.

Das obige ist der detaillierte Inhalt vonWas sind die besten Python-Bibliotheken für Data Science?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1665
14
PHP-Tutorial
1269
29
C#-Tutorial
1249
24
Python vs. C: Anwendungen und Anwendungsfälle verglichen Python vs. C: Anwendungen und Anwendungsfälle verglichen Apr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

See all articles