


Wie kann ich Pandas verwenden, um Daten an eine vorhandene CSV-Datei anzuhängen?
CSV-Dateien mit Pandas erweitern
Bei der Arbeit mit großen Datensätzen kann es notwendig sein, Daten zu einer vorhandenen CSV-Datei hinzuzufügen. Pandas, eine leistungsstarke Datenbearbeitungsbibliothek in Python, bietet die Funktion to_csv() zum Exportieren von Daten in das CSV-Format. In diesem Artikel wird die Verwendung von to_csv() zum Anhängen von Daten an eine vorhandene CSV-Datei untersucht, um die Kompatibilität mit deren Struktur sicherzustellen.
Anhängen an vorhandene CSV-Dateien
To_csv( )-Funktion bietet einen Schreibmodusparameter, mit dem Benutzer angeben können, wie die Daten in die Datei geschrieben werden. Wenn Sie diesen Parameter auf „a“ setzen, werden die Daten an die vorhandene Datei angehängt. Beispiel:
df.to_csv('my_csv.csv', mode='a', header=False)
Hier wird der Datenrahmen df an die CSV-Datei mit dem Namen „my_csv.csv“ angehängt. Der Parameter header=False stellt sicher, dass die Kopfzeile nicht mehrfach geschrieben wird.
Es ist wichtig zu beachten, dass der Standardschreibmodus für to_csv() „w“ ist, wodurch die vorhandene Datei überschrieben wird. Um den Anhängemodus sicherzustellen, geben Sie explizit „a“ an.
Umgang mit anfänglicher Abwesenheit der Datei
Wenn die Ziel-CSV-Datei anfangs nicht vorhanden ist, ist die Kopfzeile möglicherweise nicht vorhanden korrekt geschrieben, wenn der Anhängemodus verwendet wird. Um dieses Problem zu beheben, können Sie die folgende Variante verwenden:
import os output_path='my_csv.csv' df.to_csv(output_path, mode='a', header=not os.path.exists(output_path))
Dieser Code prüft mithilfe von os.path.exists(), ob die Datei vorhanden ist. Ist dies nicht der Fall, wird die Kopfzeile geschrieben, indem header=True gesetzt wird. Andernfalls werden die Daten ohne Header angehängt.
Das obige ist der detaillierte Inhalt vonWie kann ich Pandas verwenden, um Daten an eine vorhandene CSV-Datei anzuhängen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
