


Wie kann ich die Größe eines C-Arrays zur Kompilierungszeit effizient bestimmen?
Grundlegendes zur Vorlagenfunktion „Größe des Arrays“
Dieser Code definiert eine Vorlagenfunktion, GetArrLength, die dazu dient, die Größe eines Arrays zu bestimmen:
template<typename T, int size> int GetArrLength(T(&)[size]){return size;}
Aufschlüsselung der Funktionsparameter
Der Parameter T(&)[size] wird als a deklariert Verweis auf ein Array mit der Größe size vom Typ T. Dies bedeutet, dass ein Verweis auf jedes Array akzeptiert wird, dessen Typ und Größe als Vorlagenparameter angegeben sind.
Template Parameter Matching
Beim Aufruf dieser Funktion Der Compiler versucht, die Vorlagenparameter abzuleiten. Wenn wir es beispielsweise wie folgt aufrufen:
int a[10]; GetArrLength(a);
Der Compiler stellt fest, dass T int ist und die Größe 10 beträgt, und erstellt einen Parameterverweis auf ein Array mit 10 Ganzzahlen.
Funktion Verhalten
Die Funktion gibt den Wert der Vorlagenparametergröße zurück und liefert damit effektiv die Anzahl der Elemente in der Array.
Verwendung und Einschränkungen
Dieser Code vereinfacht das Ermitteln der Array-Größe, weist jedoch einige Nachteile auf. Erstens verwendet es einen vorzeichenbehafteten Typ sowohl für den Vorlagenparameter als auch für den Rückgabewert, was problematisch ist, da Größen nicht negativ sein dürfen. Für eine robustere Lösung sollte ein vorzeichenloser Typ wie std::size_t verwendet werden.
Zweitens ist das Ergebnis dieser Funktion kein Konstantenausdruck, obwohl dies bei einer Array-Größe der Fall sein sollte. Die Auswertung konstanter Ausdrücke ist für bestimmte Optimierungen unerlässlich.
Lösung mit konstanten Ausdrücken
Ein fortgeschrittenerer Ansatz, der ein Ergebnis mit konstanten Ausdrücken liefert, umfasst die Verwendung der Typselbstprüfung und des Operators sizeof:
template <std::size_t N> struct type_of_size { typedef char type[N]; }; template <typename T, std::size_t Size> typename type_of_size<Size>::type& sizeof_array_helper(T(&)[Size]); #define sizeof_array(pArray) sizeof(sizeof_array_helper(pArray))
Diese Technik nutzt die Tatsache aus, dass die Größe eines Zeichenarrays seiner Elementanzahl entspricht. Der sizeof-Operator ruft die Größe des char-Arrays ab, das zur Darstellung der Vorlagenparametergröße verwendet wird, und liefert eine konstante Ausdrucksauswertung der Array-Größe.
Das obige ist der detaillierte Inhalt vonWie kann ich die Größe eines C-Arrays zur Kompilierungszeit effizient bestimmen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Die Geschichte und Entwicklung von C# und C sind einzigartig, und auch die Zukunftsaussichten sind unterschiedlich. 1.C wurde 1983 von Bjarnestrustrup erfunden, um eine objektorientierte Programmierung in die C-Sprache einzuführen. Sein Evolutionsprozess umfasst mehrere Standardisierungen, z. B. C 11 Einführung von Auto-Keywords und Lambda-Ausdrücken, C 20 Einführung von Konzepten und Coroutinen und sich in Zukunft auf Leistung und Programme auf Systemebene konzentrieren. 2.C# wurde von Microsoft im Jahr 2000 veröffentlicht. Durch die Kombination der Vorteile von C und Java konzentriert sich seine Entwicklung auf Einfachheit und Produktivität. Zum Beispiel führte C#2.0 Generics und C#5.0 ein, die eine asynchrone Programmierung eingeführt haben, die sich in Zukunft auf die Produktivität und das Cloud -Computing der Entwickler konzentrieren.

Es gibt signifikante Unterschiede in den Lernkurven von C# und C- und Entwicklererfahrung. 1) Die Lernkurve von C# ist relativ flach und für rasche Entwicklung und Anwendungen auf Unternehmensebene geeignet. 2) Die Lernkurve von C ist steil und für Steuerszenarien mit hoher Leistung und niedrigem Level geeignet.

C interagiert mit XML über Bibliotheken von Drittanbietern (wie Tinyxml, Pugixml, Xerces-C). 1) Verwenden Sie die Bibliothek, um XML-Dateien zu analysieren und in C-verarbeitbare Datenstrukturen umzuwandeln. 2) Konvertieren Sie beim Generieren von XML die C -Datenstruktur in das XML -Format. 3) In praktischen Anwendungen wird XML häufig für Konfigurationsdateien und Datenaustausch verwendet, um die Entwicklungseffizienz zu verbessern.

Die Anwendung der statischen Analyse in C umfasst hauptsächlich das Erkennen von Problemen mit Speicherverwaltung, das Überprüfen von Code -Logikfehlern und die Verbesserung der Codesicherheit. 1) Statische Analyse kann Probleme wie Speicherlecks, Doppelfreisetzungen und nicht initialisierte Zeiger identifizieren. 2) Es kann ungenutzte Variablen, tote Code und logische Widersprüche erkennen. 3) Statische Analysetools wie die Deckung können Pufferüberlauf, Ganzzahlüberlauf und unsichere API -Aufrufe zur Verbesserung der Codesicherheit erkennen.

C hat immer noch wichtige Relevanz für die moderne Programmierung. 1) Hochleistungs- und direkte Hardware-Betriebsfunktionen machen es zur ersten Wahl in den Bereichen Spieleentwicklung, eingebettete Systeme und Hochleistungs-Computing. 2) Reiche Programmierparadigmen und moderne Funktionen wie Smart -Zeiger und Vorlagenprogrammierung verbessern seine Flexibilität und Effizienz. Obwohl die Lernkurve steil ist, machen sie im heutigen Programmierökosystem immer noch wichtig.

Durch die Verwendung der Chrono -Bibliothek in C können Sie Zeit- und Zeitintervalle genauer steuern. Erkunden wir den Charme dieser Bibliothek. Die Chrono -Bibliothek von C ist Teil der Standardbibliothek, die eine moderne Möglichkeit bietet, mit Zeit- und Zeitintervallen umzugehen. Für Programmierer, die in der Zeit gelitten haben.H und CTime, ist Chrono zweifellos ein Segen. Es verbessert nicht nur die Lesbarkeit und Wartbarkeit des Codes, sondern bietet auch eine höhere Genauigkeit und Flexibilität. Beginnen wir mit den Grundlagen. Die Chrono -Bibliothek enthält hauptsächlich die folgenden Schlüsselkomponenten: std :: chrono :: system_clock: repräsentiert die Systemuhr, mit der die aktuelle Zeit erhalten wird. std :: chron

Die Zukunft von C wird sich auf parallele Computer, Sicherheit, Modularisierung und KI/maschinelles Lernen konzentrieren: 1) Paralleles Computer wird durch Merkmale wie Coroutinen verbessert. 2) Die Sicherheit wird durch strengere Mechanismen vom Typ Überprüfung und Speicherverwaltung verbessert. 3) Modulation vereinfacht die Codeorganisation und die Kompilierung. 4) KI und maschinelles Lernen fordern C dazu auf, sich an neue Bedürfnisse anzupassen, wie z. B. numerische Computer- und GPU -Programmierunterstützung.
