


Wie kann ich mithilfe von Z-Scores Ausreißer aus einem Pandas-DataFrame identifizieren und entfernen?
Ausreißer in einem Pandas-DataFrame identifizieren und ausschließen
In einem Pandas-DataFrame mit mehreren Spalten können Ausreißer anhand bestimmter Spaltenwerte identifiziert und ausgeschlossen werden Verbesserung der Datengenauigkeit und -zuverlässigkeit. Ausreißer oder Extremwerte, die erheblich vom Großteil der Daten abweichen, können die Analyseergebnisse verzerren und zu falschen Schlussfolgerungen führen.
Um Ausreißer effektiv zu filtern, besteht ein robuster Ansatz darin, sich auf statistische Techniken zu verlassen. Eine Methode besteht darin, den Z-Score zu verwenden, ein Maß dafür, um wie viele Standardabweichungen ein Wert vom Mittelwert abweicht. Zeilen mit Z-Scores, die einen vordefinierten Schwellenwert überschreiten, können als Ausreißer betrachtet werden.
Verwendung von sciPy.stats.zscore
Die sciPy-Bibliothek stellt die Funktion zscore() zur Berechnung von Z bereit -Scores für jede Spalte in einem DataFrame. Hier ist eine elegante Lösung zum Erkennen und Ausschließen von Ausreißern:
import pandas as pd import numpy as np from scipy import stats df = pd.DataFrame({'Vol': [1200, 1220, 1215, 4000, 1210]}) outlier_threshold = 3 # Compute Z-scores for the 'Vol' column zscores = np.abs(stats.zscore(df['Vol'])) # Create a mask to identify rows with outliers outlier_mask = zscores > outlier_threshold # Exclude rows with outliers df_without_outliers = df[~outlier_mask]
Dieser Ansatz identifiziert effektiv die Ausreißerzeilen und entfernt sie aus dem DataFrame.
Umgang mit mehreren Spalten
Bei mehreren Spalten kann die Ausreißererkennung auf eine bestimmte Spalte oder alle Spalten angewendet werden gleichzeitig:
# Outliers in at least one column outlier_mask = (np.abs(stats.zscore(df)) < outlier_threshold).all(axis=1) # Remove rows with outliers in any column df_without_outliers = df[~outlier_mask]
# Outliers in a specific column ('Vol') zscores = np.abs(stats.zscore(df['Vol'])) outlier_mask = zscores > outlier_threshold # Remove rows with outliers in the 'Vol' column df_without_outliers = df[~outlier_mask]
Durch den Einsatz statistischer Methoden wie Z-Score-Berechnungen ist es möglich, Ausreißer in einem Pandas-DataFrame effizient zu erkennen und auszuschließen, wodurch sauberere und zuverlässigere Daten für die Analyse gewährleistet werden.
Das obige ist der detaillierte Inhalt vonWie kann ich mithilfe von Z-Scores Ausreißer aus einem Pandas-DataFrame identifizieren und entfernen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.
