


Wie kann ich NaN-Werte in Pandas DataFrames effektiv ersetzen?
NaN-Werte in Dataframe-Spalten ersetzen
Bei der Arbeit mit DataFrames in Pandas können fehlende oder ungültige Daten durch NaN-Werte dargestellt werden. Um die Datenqualität sicherzustellen und Fehler zu vermeiden, ist es häufig erforderlich, diese NaN-Werte durch geeignete Platzhalter oder Imputationen zu ersetzen.
DataFrame.fillna()-Methode
Die einfachste Die Methode zum Ersetzen von NaN-Werten verwendet die Methode fillna(). Es nimmt einen Wert oder ein Wörterbuch als Argument und ersetzt alle NaN-Werte in den angegebenen Spalten oder im gesamten DataFrame durch den bereitgestellten Wert.
Beispiel:
import pandas as pd df = pd.DataFrame({ "itm": [420, 421, 421, 421, 421, 485, 485, 485, 485, 489, 489], "Date": ["2012-09-30", "2012-09-09", "2012-09-16", "2012-09-23", "2012-09-30", "2012-09-09", "2012-09-16", "2012-09-23", "2012-09-30", "2012-09-09", "2012-09-16"], "Amount": [65211, 29424, 29877, 30990, 61303, 71781, float("NaN"), 11072, 113702, 64731, float("NaN")] }) df.fillna(0)
Ausgabe:
itm Date Amount 0 420 2012-09-30 65211 1 421 2012-09-09 29424 2 421 2012-09-16 29877 3 421 2012-09-23 30990 4 421 2012-09-30 61303 5 485 2012-09-09 71781 6 485 2012-09-16 0.0 7 485 2012-09-23 11072.0 8 485 2012-09-30 113702.0 9 489 2012-09-09 64731 10 489 2012-09-16 0.0
Zusätzlich Methoden:
Während fillna() am häufigsten vorkommt, gibt es mehrere andere Methoden, die zum Ersetzen von NaN-Werten verwendet werden können:
- .replace() : Mit dieser Methode können NaN-Werte durch einen bestimmten Wert oder einen ersetzt werden mask.
- .interpolate(): Diese Methode verwendet eine Vielzahl von Interpolationstechniken, um fehlende Werte zu schätzen.
- .pivot_table(): Dies Die Methode kann zum Gruppieren und Aggregieren von Daten verwendet werden, wobei fehlende Daten ignoriert werden Werte.
Fazit:
Das Ersetzen von NaN-Werten in DataFrames ist für die Datenbereinigung und -manipulation unerlässlich. Durch den Einsatz der oben beschriebenen Methoden können Sie effektiv mit fehlenden oder ungültigen Daten umgehen und so die Integrität und Qualität Ihrer Datenanalyse sicherstellen.
Das obige ist der detaillierte Inhalt vonWie kann ich NaN-Werte in Pandas DataFrames effektiv ersetzen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.
