


Wie kann man rohe HTTP-Anforderungs-/Antwortkörper in FastAPI effizient protokollieren?
Roh-HTTP-Anfrage/-Antwort in Python FastAPI protokollieren
Anforderung:
Erfassen und speichern Sie die rohen JSON-Körper bestimmter Leiten Sie Anfragen und Antworten mit einer Datengröße von etwa 1 MB weiter, ohne die Antwortzeiten wesentlich zu beeinträchtigen.
Option 1: Verwendung von Middleware
Middleware-Konzept
Middleware fängt jede Anfrage ab, bevor sie Endpunkte erreicht, und antwortet, bevor sie an Clients gesendet wird, was eine Datenmanipulation ermöglicht. Das Problem bei der Verwendung des Anforderungstextstroms in der Middleware besteht jedoch darin, dass er für nachgeschaltete Endpunkte nicht mehr verfügbar ist. Daher verwenden wir die Funktion set_body(), um sie verfügbar zu machen.
Für Antworten verwenden Sie BackgroundTask
Die Protokollierung kann mit BackgroundTask durchgeführt werden, wodurch sichergestellt wird, dass die Protokollierung nach der Antwort erfolgt an den Kunden gesendet, wodurch Verzögerungen bei den Antwortzeiten vermieden werden.
Middleware-Beispiel
# Logging middleware async def some_middleware(request: Request, call_next): req_body = await request.body() await set_body(request, req_body) response = await call_next(request) # Body storage in RAM res_body = b'' async for chunk in response.body_iterator: res_body += chunk # Background logging task task = BackgroundTask(log_info, req_body, res_body) return Response(...) # Endpoint using middleware @app.post('/') async def main(payload: Dict): pass
Option 2: Benutzerdefiniert APIRoute-Klasse
APIRoute-Klassenerweiterung
Durch die Erstellung einer benutzerdefinierten APIRoute-Klasse können wir Anforderungs- und Antworttexte steuern und ihre Verwendung auf bestimmte Routen über einen APIRouter beschränken.
Wichtige Überlegungen
Bei großen Antworten (z. B. Streaming-Medien) kann es bei der benutzerdefinierten Route zu RAM-Problemen oder clientseitigen Verzögerungen aufgrund des Lesens kommen gesamte Antwort in den RAM. Erwägen Sie daher, solche Endpunkte von der benutzerdefinierten Route auszuschließen.
Beispiel für eine benutzerdefinierte APIRoute-Klasse
class LoggingRoute(APIRoute): async def custom_route_handler(request: Request) -> Response: req_body = await request.body() response = await original_route_handler(request) # Response handling based on type if isinstance(response, StreamingResponse): res_body = b'' async for item in response.body_iterator: res_body += item response = Response(...) else: response.body # Logging task task = BackgroundTask(log_info, req_body, response.body) response.background = task return response # Endpoint using custom APIRoute @router.post('/') async def main(payload: Dict): return payload
Eine Option auswählen
Beide Optionen bieten Lösungen für die Protokollierung von Anforderungs- und Antwortdaten ohne die Reaktionszeiten erheblich beeinträchtigen. Option 1 ermöglicht eine allgemeine Protokollierung, während Option 2 eine detaillierte Kontrolle über Routen bietet, die eine Protokollierung erfordern.
Das obige ist der detaillierte Inhalt vonWie kann man rohe HTTP-Anforderungs-/Antwortkörper in FastAPI effizient protokollieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
