


Wie können MySQL und PHP für einen effizienten Fuzzy-Matching von Firmennamen verwendet werden?
Nutzung von MySQL und PHP für den effizienten Fuzzy-Abgleich von Firmennamen
Um die Benutzererfahrung bei der Autovervollständigungsfunktion zu verbessern, ist es entscheidend, eine effiziente Methode zu finden für Fuzzy-Matching großer Mengen von Firmennamen. In diesem Fall ist die Berücksichtigung von Geschwindigkeit und Genauigkeit von größter Bedeutung.
Bewertung der Soundex-Indizierung
Obwohl die Soundex-Indizierung eine schnelle Lösung darstellen kann, weist sie Einschränkungen bei der Erfassung von Nuancen in Namen auf , insbesondere längere Saiten mit Variationen gegen Ende. Darüber hinaus kann es weniger effektiv sein, wenn ein Name falsch eingegeben wird, da es stark vom ersten Zeichen abhängt.
Levenshtein-Entfernung erkunden
Ein alternativer Ansatz, der mehr bietet Flexibilität ist Levenshtein-Distanz. Es vergleicht die Ähnlichkeit zwischen zwei Zeichenfolgen, indem es die Mindestanzahl an Bearbeitungen (Einfügungen, Löschungen oder Ersetzungen) berechnet, die erforderlich sind, um eine in die andere umzuwandeln.
Der Nachteil der Levenshtein-Distanz ist jedoch ihr Rechenaufwand erfordert beide Strings, um den Abstand zu berechnen. Dies kann sich auf die Leistung beim Umgang mit großen Datensätzen auswirken.
Kombination von Soundex und Levenshtein Distance
Um sowohl Geschwindigkeit als auch Genauigkeit zu erreichen, kann ein hybrider Ansatz implementiert werden. Erste Übereinstimmungen können mit Soundex gefiltert werden, um die Suche einzugrenzen. Dies kann besonders nützlich sein, wenn große Datensätze verarbeitet werden. Zur Feinabstimmung der Ergebnisse kann die Levenshtein-Distanz auf die reduzierte Gruppe von Kandidaten angewendet werden, um eine genauere Übereinstimmung zu erzielen.
Beispielverwendung
In PHP ist dies möglich Verwenden Sie die Funktion soundex() für die Soundex-Indizierung und die Funktion levenshtein() für die Levenshtein-Distanz. Unten ist ein Beispielcode-Snippet:
$input = 'Microsoft Corporation'; // Perform Soundex indexing $soundex = soundex($input); // Query the database for matches using Soundex $sql = "SELECT company_id FROM companies WHERE soundex = '$soundex'"; // Retrieve the matching company IDs $company_ids = $mysqli->query($sql)->fetch_all(); // Filter matches further using Levenshtein distance foreach ($company_ids as $id) { $distance = levenshtein($input, $companyName); if ($distance < 3) { // Add company name to the result set here } }
Dieser Ansatz kombiniert die Geschwindigkeit der Soundex-Indizierung mit der Genauigkeit der Levenshtein-Distanz und ermöglicht so einen effizienten und zuverlässigen Fuzzy-Abgleich von Firmennamen.
Das obige ist der detaillierte Inhalt vonWie können MySQL und PHP für einen effizienten Fuzzy-Matching von Firmennamen verwendet werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Die Hauptaufgabe von MySQL in Webanwendungen besteht darin, Daten zu speichern und zu verwalten. 1.Mysql verarbeitet effizient Benutzerinformationen, Produktkataloge, Transaktionsunterlagen und andere Daten. 2. Durch die SQL -Abfrage können Entwickler Informationen aus der Datenbank extrahieren, um dynamische Inhalte zu generieren. 3.Mysql arbeitet basierend auf dem Client-Server-Modell, um eine akzeptable Abfragegeschwindigkeit sicherzustellen.

InnoDB verwendet Redologs und undologische, um Datenkonsistenz und Zuverlässigkeit zu gewährleisten. 1.REDOLOogen zeichnen Datenseitenänderung auf, um die Wiederherstellung und die Durchführung der Crash -Wiederherstellung und der Transaktion sicherzustellen. 2.Strundologs zeichnet den ursprünglichen Datenwert auf und unterstützt Transaktionsrollback und MVCC.

Im Vergleich zu anderen Programmiersprachen wird MySQL hauptsächlich zum Speichern und Verwalten von Daten verwendet, während andere Sprachen wie Python, Java und C für die logische Verarbeitung und Anwendungsentwicklung verwendet werden. MySQL ist bekannt für seine hohe Leistung, Skalierbarkeit und plattformübergreifende Unterstützung, die für Datenverwaltungsanforderungen geeignet sind, während andere Sprachen in ihren jeweiligen Bereichen wie Datenanalysen, Unternehmensanwendungen und Systemprogramme Vorteile haben.

Die MySQL -Idium -Kardinalität hat einen signifikanten Einfluss auf die Abfrageleistung: 1. Hoher Kardinalitätsindex kann den Datenbereich effektiver einschränken und die Effizienz der Abfrage verbessern. 2. Niedriger Kardinalitätsindex kann zu einem vollständigen Tischscannen führen und die Abfrageleistung verringern. 3. Im gemeinsamen Index sollten hohe Kardinalitätssequenzen vorne platziert werden, um die Abfrage zu optimieren.

Zu den grundlegenden Operationen von MySQL gehört das Erstellen von Datenbanken, Tabellen und die Verwendung von SQL zur Durchführung von CRUD -Operationen für Daten. 1. Erstellen Sie eine Datenbank: createdatabasemy_first_db; 2. Erstellen Sie eine Tabelle: CreateTableBooks (IDINGAUTO_INCRECTIONPRIMARYKEY, Titelvarchar (100) Notnull, AuthorVarchar (100) Notnull, veröffentlicht_yearint); 3.. Daten einfügen: InsertIntoBooks (Titel, Autor, veröffentlicht_year) va

MySQL eignet sich für Webanwendungen und Content -Management -Systeme und ist beliebt für Open Source, hohe Leistung und Benutzerfreundlichkeit. 1) Im Vergleich zu Postgresql führt MySQL in einfachen Abfragen und hohen gleichzeitigen Lesevorgängen besser ab. 2) Im Vergleich zu Oracle ist MySQL aufgrund seiner Open Source und niedrigen Kosten bei kleinen und mittleren Unternehmen beliebter. 3) Im Vergleich zu Microsoft SQL Server eignet sich MySQL besser für plattformübergreifende Anwendungen. 4) Im Gegensatz zu MongoDB eignet sich MySQL besser für strukturierte Daten und Transaktionsverarbeitung.

InnoDbbufferpool reduziert die Scheiben -E/A durch Zwischenspeicherung von Daten und Indizieren von Seiten und Verbesserung der Datenbankleistung. Das Arbeitsprinzip umfasst: 1. Daten lesen: Daten von Bufferpool lesen; 2. Daten schreiben: Schreiben Sie nach der Änderung der Daten an Bufferpool und aktualisieren Sie sie regelmäßig auf Festplatte. 3. Cache -Management: Verwenden Sie den LRU -Algorithmus, um Cache -Seiten zu verwalten. 4. Lesemechanismus: Last benachbarte Datenseiten im Voraus. Durch die Größe des Bufferpool und die Verwendung mehrerer Instanzen kann die Datenbankleistung optimiert werden.

MySQL verwaltet strukturierte Daten effizient durch Tabellenstruktur und SQL-Abfrage und implementiert Inter-Tisch-Beziehungen durch Fremdschlüssel. 1. Definieren Sie beim Erstellen einer Tabelle das Datenformat und das Typ. 2. Verwenden Sie fremde Schlüssel, um Beziehungen zwischen Tabellen aufzubauen. 3.. Verbessern Sie die Leistung durch Indexierung und Abfrageoptimierung. 4. regelmäßig Sicherung und Überwachung von Datenbanken, um die Datensicherheit und die Leistungsoptimierung der Daten zu gewährleisten.
